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HIV protease inhibitors (PI) are core components of Highly Active Antiretroviral 

Therapy (HAART). HIV PIs are extremely effective at suppressing viral load, but have been 

linked to lipodystrophy and dyslipidemia, which are major risk factors for cardiovascular 

disease. Recent studies indicate that activation of endoplasmic reticulum (ER) stress is an 

important cellular mechanism underlying HIV PI-induced dysregulation of lipid metabolism. 
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However, the exact role of ER stress in HIV PI-associated lipodystrophy and dyslipidemia 

remains to be identified.  

Hepatocytes and adipocytes are important players in regulating lipid metabolism and the 

inflammatory state. Dysfunction of these two cell types is closely linked to various metabolic 

diseases. In this dissertation research, we aimed to define the role of activation of ER stress in 

HIV PI-induced dysregulation of lipid metabolism in adipocytes and hepatocytes and further 

identifty the potential molecular mechanisms. Both cultured and primary mouse adipocytes and 

hepatocytes were used to examine the effect of individual HIV PIs on ER stress activation and 

lipid metabolism. The results indicated that HIV PIs differentially activate ER stress through 

depletion of ER calcium stores, activating the unfolded protein response (UPR). UPR activation 

further lead to an alteration of cellular differentiation through downstream transcription factor 

CHOP. At the same time, HIV PIs also altered adipogenesis via differential regulation of the 

adipogenic transcription factor PPARγ. HIV PI-induced ER stress was closely linked to 

dysregulation of autophagy activation through CHOP, and upstream ATF-4, signaling pathways. 

In hepatocytes, the integrase inhibitor raltegravir abrogated HIV PI-induced lipid accumulation 

by inhibiting ER stress activation and dysregulation of autophagy pathway.  

 Our studies suggest that both ER stress and autophagy are involved in HIV PI-induced 

dysregulation of lipid metabolism in adipocytes and hepatocytes. The key components of ER 

stress and autophagy signaling pathways are potential therapeutic targets for HIV PI-induced 

metabolic side effects in HIV HAART-treated patients.   
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CHAPTER I: Background 

I. HIV and Consequential Difficulties 

 A. Human Immunodeficiency Virus 

 The overwhelming impact the Human Immunodeficiency Virus (HIV) has on the world 

is undeniable – by the end of 2009 there were 33.3 million people living with HIV in the world, 

with 1.8 million deaths in that year alone (1). The first identification of Acquired Immuno 

Deficiency Syndrome (AIDS) in the United States was in 1980, and since then, more than 27 

million people have died from complications of infection. In addition, the high rate of deaths can 

be directly attributed to the lack of available medications – only 36% of the infected population 

received adequate antiretroviral therapy (2).  

Besides the known political and monetary issues at hand, there are multiple HIV viral 

subtypes and sub-subtypes that have been described and overwhelm pharmaceutical availability. 

In fact, most research completed on HIV therapies has occurred, and continues to occur, in 

Europe and America, targeting the HIV-1 strain, although much of the world population is also 

afflicted by HIV-2. In addition, HIV-1 has 3 clades (M, O, and N), of which M is most common 

in the United States. M has 9 subtypes, and under these, there exist sub-subtypes which 

recombine to form circulating recombinant forms (CRFs) in multiply-infected individuals 

(Figure 1). Differences even within the strain related CRFs can be the basis seen in differences of 

cellular tropisms, viral fitness, and effect in each individual‟s therapy.  

 The ability of HIV to rapidly mutate due to the imperfect enzyme used for genome 

replication has resulted in a multitude of strains resistant to therapies on the market. To combat 

viral strain mutations, Highly Active Antiretroviral Therapy (HAART) has increased in  
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Figure 1. Diagram of HIV subtypes. Depiction of HIV-1 and -2 subtypes and clades. Reprinted 

by permission from Macmillan Publishers Ltd: [Nature Reviews Microbiology] (3), copyright 

(2007). 
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complexity and effectively decreased deaths from opportunistic infections in those that are 

candidates for this treatment. This century has seen the ability of HAART to turn a deadly virus 

into a chronic infection. Due to polymorphic differences in individual strain enzymes, that some 

individuals are infected with less common strains, and diverse side effect profiles, physicians 

must seriously consider which drugs to prescribe to each individual in their clinic.  

 B. FDA Approved Antiretrovirals in Sequence of Viral Cycle  

 The first essential step in HIV infection of immune cells (T cells or macrophages) is 

fusion of the viral and cellular membranes. This process occurs through interaction of the viral 

glycoprotein, gp120, and the CD4 molecule on the cell surface. After the initial interaction 

between these two proteins, viral proteins utilize a secondary receptor interaction through 

CXCR4 (T-tropic) or CCR5 (M-tropic). Maraviroc is a relatively recently approved 

antiretroviral that inhibits fusion via binding to, and therefore preventing interactions, to CCR5. 

Another, less commonly prescribed, is Fuzeon (enfuvirtide), which binds to the viral gp41. 

 After entry into the cellular cytoplasm, the viral genome (two copies of a single-stranded 

RNA) is reverse-transcribed into DNA by the viral enzyme, reverse transcriptase (RT). The first 

anti-HIV drugs to come on the market inhibited this enzyme. There are currently three classes of 

inhibitor, nucleotide and nucleoside analogs (NRTI), as well as non-analogues (NNRTI), and 

those drugs that can act as both. NRTIs are analogues to deoxynucleotides which are 

incorporated into the growing DNA chain. NRTIs lack one significant motif of 

deoxynucleotides, a 3‟-hydroxyl group, which is essential in linking each deoxy in the chain. 

Without this hydroxyl group, NRTIs cause a halt in synthesis, terminating the chain. NNRTIs, on 

the other hand, bind directly to the RT itself, inhibiting the function of an essential enzyme. 
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 The next step is integration of the newly synthesized viral DNA strand and the host 

genome by the viral integrase enzyme. In 2007, the FDA approved Raltegravir, which directly 

inhibits this enzyme, thereby preventing viral genome integration and latency of HIV in the host 

cell. 

 Upon host cell activation, often in times of stress such as infection and inflammation, the 

integrated virus cuts itself from the host genome, and begins the viral replication cycle. Here, the 

virus utilizes the host enzyme RNA polymerase to produce multiple copies of packagable RNA 

strands from the viral DNA sequence. At the same time, the host cell machinery is recruited to 

synthesize viral proteins that will be necessary for virion production and release. After protein 

production and the beginning of packaging, the viral enzyme protease cleaves long HIV proteins 

into functional segments (see Section II). Mature virions are subsequently released when 

immature particles bud from the membrane and form mature infectious virions with the help of 

protease. HIV protease inhibitors (PI) essentially inhibit viable virion production by inhibiting 

the action of this essential viral enzyme. 

 Please see Figure 2 for a depiction of HIV life cycle and how each class of anti-HIV 

drugs inhibits replication of the virus in a host cell. 

C. History Leading to Current Drug Class Recommendations 

 Zidovudine, an NRTI, was the first drug approved in 1987. As is the case of the 

following approvals of zalcitabine, stavudine, and didanosine, the NRTIs seemed effective, yet 

the development of resistant strains caused a rebound in opportunistic infections in patients.In 

1995, a major turning point occurred with the approval of HIV PIs ritonavir, saquinavir, and 

indinavir. Not only did these drugs work independently to help reduce viral load, but  
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Figure 2. Targeting HIV Lifecycle. Current marketed anti-HIV therapies target different stages 

of HIV life cycle, from fusion, reverse transcription, integration, and viable virion budding. Drug 

classes are labeled to the targets they inhibit. Reprinted by permission from Macmillan 

Publishers Ltd: [Nature Medicine] (4), copyright (2003). 
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combination therapy with NRTIs drastically decreased opportunistic infections. This regimen is 

now known as HAART, and most frequently includes two NRTIs with one PI, though 2 NRTIs 

combination therapy with NRTIs drastically decreased opportunistic infections. This regimen is 

now known as HAART, and most frequently includes two NRTIs with one PI, though 2 NRTIs 

with 1 NNRTI, or 3 NRTIs are also used. With the constant battle of resistant strains in the 

current HIV-infected population, addition of integrase or fusion inhibitors can increase efficacy 

of these regimens. 

       D. Consequences of Mutations 

 The continuous development of drugs has allowed successful combat towards resistant 

strains. Resistance in individual strains is not rare due to an inherently high mutation rate of HIV 

resulting from the imperfect reverse transcriptase enzyme. Yet, the probability of mutation 

leading to resistance to a given antiretroviral increases when patients are inconsistent in the 

taking the prescribed drug.  

 The variety of mutations seen in individual infectious viruses can be divided into 

subclasses, primary (major) or secondary (minor). The most significant mutation in the case of 

HIV drug resistance is that of secondary mutations. In this instance, a point change occurs, 

confirring resistance to a drug. These mutations are dependent on the background genetics of the 

particular viral strain and the resulting fitness of that virion after such a mutation. For instance, a 

single amino acid change in subtype F1 will be needed for resistance to a PI. This point mutation 

differs from the one needed for subtype G2 to confer resistance. Genetic diversity must be taken 

into account to understand mutations resulting in drug resistance. One significant example – non 

B type HIV will not mutate as much as B type HIV at specific amino acids needed for resistance 

to PI because efficiency of replication drops more than half compared to the respective wild type.  
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 These genetic barriers allow a clinician to use a patients viral genotype to determine 

which HAART regimen will be most effective in decreasing viral load. In addition, genotyping 

can be repeated after a few years of treatment to determine what drugs to add or switch to 

decrease selction of mutated strains. Unfortunately, this process can inevitably end as the 

physician uses all available drugs due to mutating strains and/or individual non-compliance. 

II. HIV Protease 

 The HIV genome is a single-stranded mRNA, of which each virion carries two copies. 

There are 9 genes that encode 15 proteins, 3 of which are essential. The nonessential genes 

include vif, or viral infectivity factor which aids in stable reverse transcription; vpr, or encoding 

viral protein R which arrests cells in G2; vpu, or viral protein U which promotes virion release; 

rev, or regulator of viral gene expression which inhibits splicing of transcripts; and tat, or 

transcriptional activator which enhances RNA polymerase II. The essential genes are – gag, pol, 

and env which encode for structural proteins, essential enzymes, and envelope proteins 

respectively. During translation, gag is translated as a long 55 kDa precursor, and pol as a 160-

kDa Gag-Pol fusion protein. These polypeptides must be cleaved at specific moments in the HIV 

life cycle in order to produce functional proteins and viable virions. 

This essential activity is handled by HIV protease, which cleaves the polypeptides during 

virion budding. Protease recognizes substrates that have multi-folded domains, containing 

linking regions with non-homologous and asymmetric sequences. The crystal structure of 

protease was first shown in 1989 by Merck Sharp and Dohme Research Laboratories (5), giving 

both interesting knowledge about HIV and a structure-based drug design for inhibition of virion 

production.  
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Protease is an aspartic protease within the peptidase family A2 (retropepsin 

endopeptidase). It cleaves between either a tyrosine-phenylalanine or tyrosine-proline, which no 

human host cell enzyme accomplishes. Despite high sequence mutation, the catalytic triad (Asp-

Thr-Gly) is well conserved, though other regions may change due to both genetic variation and 

drug resistance. 

Protease contains a quartenary structure, and is a dimer by which each monomer consists 

of 99 amino acids (6), and the N- and C-termini of the dimers interdigitate to form a four-

stranded interface. Together, there are three domains – a terminal (or dimerization) domain, core, 

and flap. While the terminal and core domains are essential for stabilization and interface for the 

active site, the flaps are exposed loops that enclose the active site for ligand interactions. Despite 

the multi-domains of this enzyme, protease is quite stable due to a hydrophobic core, packing of 

side chains, and the Fireman‟s grip (a conserved aspartyl protease scaffold of H-bonds involving 

the catalytic residues). 

As protease is essential for the production of viable, infectious virions, it became the 

second target of inhibition for anti-HIV therapy. When PIs were introduced to the market, their 

effectiveness with NRTIs was almost immediately noted, and thus initiated the term of HAART. 

There are currently two generations of drugs, peptidic and non-peptidic (Figure 3).  The 

peptidomimetic class, though quite large and inherently diverse in structure, are related by a 

peptide bond present in each molecule, with a non-hydrolysable amino acid at the scissile bond. 

These molecules mimic the tetrahedral transition-state intermediate formed during the catalysis 

event, but become stuck due to inability of cleavage, inhibiting the entry of viral proteins (7, 8). 

Within this class, some (i.e. ritonavir) are less peptidic in nature, but exploit the symmetry of 

protease, enhancing stability while decreasing effectiveness. The non-peptidic class has moieties 
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to displace water in the active site cleft. This H2O molecule is thought to play a role in opening 

and closing the flap domains, thereby affecting substrate interaction and stability (7). 

Saquinavir (SQV) was the first PI approved by the FDA in 1995 (now as Invirase when 

boosted with Ritonavir). Indinavir (IDV) reached the market in 1996 (Crixivan), and due to a 

great outcome with NRTIs, set the bar for HAART. Ritonavir (RITV) was marketed that same 

year, but now is only given as a booster as it inhibits cytochrome P450 (the enzyme that 

metabolizes most PIs and subsequently decreases their bioavalability). Nelfinavir (NFV) was 

marketed in 1997, and subsequently became the first PI to be recommended for pediatric 

patients. In 1999, Amprenavir (AMPV – now prescribed as prodrug fosamprenavir) was 

introduced (Lexiva). 

Lopinavir (LOPV) entered the prescription option in 2000. It was structurally designed 

for mutated PIs seen often with a mutation of protease at Val82. It is similar to RITV (same 

core), but due to low bioavailability, it was prescribed only with a RITV combination. Now, the 

only form of LOPV available on the market is as a co-formulation pill, Kaletra (the first drug not 

available in single formulation). Kaletra was so successful in both drug-naïve and drug-

experienced patients, it became first-line therapy in 2006, and now has only been surpassed by 

Darunavir-RITV. Atazanavir (ATZV) was approved in 2003, and is now marketed under 

Reyataz. It was the first PI approved for once-daily dosing, increasing the pressure in 

development of more convenient PIs. 

 Non-peptidic PIs, Tipranavir (TRV) and Darunavir (DRV), have relatively recently 

reached the market – 2005 and 2006 respectively. TRV (Aptivus) development utilized coumarin 

as a template, and is now used in multiple resistant strains, but not in patients with little 

resistance due to a high side effect profile. DRV (Prezista) is now the first-line HIV PI. DRV  
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Figure 3. Planar structure of current HIV PIs. A) Peptidic and B) non-peptidic HIV PI 

subclasses were drawn in ChemDraw. Abbreviations are used in this dissertation. Figure revised 

with permission from Sage Publications: [Toxicologic Pathology] (9), copyright (2009). 
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design is based on AMPV (with a few stereochemistry changes to increase binding in resistant 

strains), and as such, the side effect list is low and effectiveness increased. However, both these 

second generation PIs must be taken in conjunction with RITV, whose lipid side effect is high. 

Despite this, the effectiveness of DRV combined with lowered long term side effects has resulted 

in surpassing prescription numbers of Kaletra in the past year. 

III. Side Effects of HIV Protease Inhibitors 

A. Metabolic Syndrome 

As the list of FDA approved antiretrovirals is long, so is the inventory of side effects. 

Even though the life expectancy of HIV-infected patients under HAART has been extended, the 

various HAART-induced side effects significantly affect quality of life. However, it is difficult 

to concretely determine if these effects are secondary to the therapies or the virus itself. 

In some cases, it may actually be both. One example of this is diminished bone density, 

observed in a large proportion of HIV infected individuals. It is already known that treatment-

naïve patients often have low bone mass, with as high as a 50% prevalence of osteopenia (10). 

There has even been proposed mechanisms of this phenomenon such as the induction of 

differentiation of bone absorbing cells (osteoclasts) (11, 12). To make matters worse, HAART 

treatment can further the reduction of bone density in a yet unknown manner (13). As in other 

side effects discussed, HIV itself can induce major pathology in individuals with no prevention, 

or even an exacerbation, by the drugs used to stop its replication. 

Despite these apparent complexities, there is still a large list of drug-attributable side 

effects. Most commonly, these include general side effects with the NRTI/NNRTIs, ranging 

from rash, anemia, nausea, vomiting, diarrhea, and sleep disturbances. More severely, it is not 



www.manaraa.com

12 

 

uncommon to observe liver toxicities, pancreatitis and neuropathy in certain patients, often with 

underlying risk factors. Further, in the past decade, there has been increasing concern over long-

term HAART patients experiencing early-onset cardiovascular risk factors such as hypertension 

(HTN) and insulin resistance. With parallel observations in the American population, some 

attributed these to environmental factors not due to the drugs.   

Some large clinical trials, especially the Data Collection on Adverse Events of Anti-HIV 

Drugs (DAD), have elucidated many particulars of HAART side effects. One specific 

phenomenon noticed in the „90s of lipodystrophy (change of body lipid composition) and 

dyslipidemia (changes in blood lipid levels) were better explained. Now peripheral wasting is no 

longer attributed to viral wasting but to NRTIs (especially stavudine and zidovudine) (14-17); 

and fat accumulation is not just a physiological phenomenon but due to PI treatment (13, 18). 

Together, this HAART side effects has been termed HIV-associated lipodystrophy (19). This has 

pathophysiologically been defined as selective damage of adipose tissue with subcutaneous fat 

loss and/or central fat accumulation.  

Additional PI-specific side effects include dyslipidemia, glucose alterations, and insulin 

resistance, which can lead to diabetes (DMII), HTN, and cardiovascular dysfunctions (20-22). A 

bottom line through these multiple investigations is that myocardial infarction is directly 

correlated with PIs, and not other components of HAART (20, 23). Interestingly, these side 

effects are also components of the clinically defined Metabolic Syndrome. 

The Metabolic Syndrome is a diagnosable syndrome, and a high risk factor for 

myocardial infarctions and strokes. To be diagnosed, according to the National Heart Lung and 

Blood Institute (NHLBI) criteria (24), a patient must have 3 out of the 5 diagnosis: 

1) >35” central circumference in woman, or >40” in men. 
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2) A triglyceride level >150mg/dL (or on treatment). 

3) A high density lipoprotein (HDL) <50mg/dL in women or <40 in men (or on treatment). 

4) A blood pressure (BP) >130/85 (or on treatment). 

5) High fasting blood glucose level, or insulin resistance (or on treatment). 

Importantly, each component above is an individual risk factor for atherosclerosis. 

HIV PI-induced atherosclerotic cardiovascular complications are leading to an increased 

cause of mortality in HIV-1 infected persons in developed countries (25). During the last decade, 

an extensive effort has been put forth to study HIV PI-induced side effects.  Both in vitro and in 

vivo animal studies from our laboratory and others‟ have linked HIV PIs with the activation of 

endoplasmic reticulum (ER) stress and oxidative stress, as well as an increase in inflammatory 

cytokine production from several cell types including macrophages, hepatocytes, intestinal 

epithelial cells and adipocytes. However, the underlying cellular and molecular mechanisms 

remain to be fully identified and therapeutic strategies are currently unavailable. Understanding 

the root cause of these chronic side effects and implications for HIV-infected patients will be 

critical to the design of effective interventions to combat the metabolic and cardiovascular 

diseases in a population chronically exposed to HAART.   

B. HIV PI-Induced Dyslipidemia 

  Alterations in serum lipids of the HIV infected population have been noted since the 

beginning of the 1990s. Before treatments began, patients often had a decrease in LDL and HDL 

plasma concentrations. NRTI treatment alone seemed to increase LDL to presumable baseline 

levels, without any effect on HDL, yet multi-drug treatments tended to increase serum 

triglycerides. In the late 1990s, effort was put forth to tease apart the effect of infection versus 

therapies on this phenomenon.  
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  Two hypotheses began these studies. First, the initial rise in serum lipid levels of HIV 

patients observed by clinicians at the start of treatment could have been partly due to immune 

reconstitution phenomena (26). This is a robust inflammatory response when HIV viral load 

decreases a few months to a year after initiation of treatment. At the same time, there has been an 

increase in average serum lipid levels in the general population due to poor diet and increasing 

age, and the HIV-HAART cohort is no different.  

  Despite these facts, it has been found in numerous long- and short-term studies, as well as 

in healthy versus HIV-infected persons, that HAART, specifically PIs, induces dyslipidemia (20, 

22, 27-32). Often, clinicians combat this phenomenon with lipid-lowering drugs. At the same 

time, research has been attempting to determine which anti-HIV drugs induce the most change in 

lipid composition, and the mechanism underlying these changes.  

Lipid homeostasis is centrally controlled by the liver. When fats are consumed in the diet, 

lipids are packaged into chylomicrons in the intestines whose final fate is the liver through an 

apoE endocytosis pathway. In order to effectively transport these to peripheral tissues, the liver 

packages triglycerides (TG) and cholesterol into very low density lipoproteins (VLDL). VLDLs 

circulate and the TGs inside are taken up by muscle and adipose tissue after hydrolysis by lipase. 

The remnants are called intermediate density lipoproteins (IDL) which can be endocytosed by 

cells or further converted to low density lipoproteins (LDL) by lipases on the surface of cells. 

LDLs are cholesterol rich particles endocytosed through apoB-100, mostly in the liver or adipose 

tissue, and pathologically by macrophages. Another type of lipoprotein is high density (HDL), 

which is a way peripheral tissues „send back‟ lipids, cholesterols, and proteins to the liver in an 

attempt not to be overloaded with these potentially toxic substances, as well as signal to the liver 

to stop synthesizing VLDLs. 
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  HAART appears to affect many aspects of this pathway. Some studies have found that 

NNRTIs may even be able to increase HDL (33), a clinical advantage for dyslipidemic patients 

leading some to want to alter regimens to decrease PIs and increase NNRTIs (34, 35). In fact, 

there were successful studies in switching from PI-based treatments to NNRTI or NRTI-only 

regimes with success in attenuating dyslipidemia (35-37). However, the effectiveness of PIs 

against HIV cannot be disputed. When PIs were added to the regimen in the mid-90s, there was a 

drastic decrease in patients who succumbed to opportunistic infections. The benefits of PIs far 

outweigh the side effects, but determining the mechanism behind these side effects may lead to 

alternative therapies in conjunction with PI use, or better-designed PIs.  

IV. Endoplasmic Reticulum Stress 

A. HIV PI-induced Metabolic Diseases and NAFLD Connection 

In HIV PI-induced metabolic dysfunctions, many features are similar to those observed in 

nonalcoholic fatty liver disease (NAFLD). NAFLD is a clinical term to describe a phenomenon 

in which patients have a fatty liver similar in all aspects to an equivalent alcoholic subject. 

Induction of NAFLD has been described in a range of conditions, such as obesity and diabetes, 

as well as induction by a variety of drugs. Donnelly and colleagues were able to demonstrate that 

the majority of hepatic lipids in patients with NAFLD come from peripheral non-esterified fatty 

acids (NEFA) (predominately from adipose tissue) and de novo lipogenesis (DNL) in the liver, 

not the diet (38).  

Patients receiving HIV PIs acquire metabolic complications that are too similar to 

NAFLD patients to ignore a connection. Indeed, HIV PIs have been clearly shown to alter lipid 

and carbohydrate metabolism pathways, the underlying mechanism of NAFLD (39). Although 
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HIV PI-induced NAFLD is not an entity of its own, many patients taking HIV PIs may have 

NAFLD with absolutely no symptoms, as does the majority of the overweight population. 

However, other patients progress to nonalcoholic steatohepatitis (NASH), which occurs with 

excess inflammation and scarring, potentially causing severe damage to the liver. In fact, many 

studies have found NASH in greater than 50% of HAART-treated patients undergoing liver 

histopathological assessments (40-42). Above all, NAFLD/NASH is most likely part of HIV PI-

induced metabolic diseases due to the strong correlations of hyperglycemia, insulin resistance, 

and dyslipidemia. Indeed, a connection is apparent between western diet-induced NAFLD and 

HIV PIs – the induction of endoplasmic reticulum (ER) stress. 

ER stress activation has been linked to various human diseases such as diabetes, 

cardiovascular diseases, and NAFLD/NASH (43-48). Concurrently, recent studies have shown 

that HIV PIs induce ER stress in many cell types including hepatocytes, macrophages and 

intestinal epithelial cells (49-56). Our laboratory has also identified that HIV PI-induced ER 

stress is partially due to depletion of ER calcium stores (51), and is linked to upregulation of 

sterol regulatory element binding proteins (SREBP) and dysregulation of lipid metabolism in 

hepatocytes (49, 57, 58). The similarities of HIV PI-induced ER stress and underlying ER stress 

in NAFLD must be further probed in order to discover the mechanism underlying HIV PI side 

effects. 

    B. Endoplasmic Reticulum Stress and the Unfolded Protein Response 

Numerous cellular pathways can be altered in times of stress, leading to cellular 

aberrations and dysfunction. In the realm of over-nutrition and its complications, ER stress is 

arguably the most common and important (59-62). ER stress is linked to multiple harmful 

pathways including the cellular inflammatory cascade and lipid metabolism dysregulation since 
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the ER is central for protein folding, secretions (e.g. cytokines), calcium homeostasis, and lipid 

synthesis.  

Inducing ER stress is relatively effortless via depletion of ER calcium stores, changes in 

ER lipid membrane composition, reactive oxygen species (ROS), or accumulation of misfolded 

proteins. When triggered, the ER signals to the cell through the unfolded protein response (UPR) 

to aid in increased productions of proteins needed for protein folding, while decreasing 

transcription and increasing degradation of other non-essential proteins. If the UPR is unable to 

return the ER to homeostastic conditions, it will trigger apoptosis. 

 A central component of the UPR is an ER chaperone protein, BiP/GRP78. In homeostatic 

conditions, BiP/GRP78 is bound to three ER membrane resident proteins, but an insult that alters 

ATP in the lumen, decreases ER calcium stores, or increases a demand of protein folding causes 

GRP78 to unbind. The three proteins, ER transmembrane kinase/endoribonuclease
 
(IRE1), 

doubled-stranded RNA-activated protein kinase-like ER
 

kinase (PERK), and activating 

transcription factor 6 (ATF-6), triggers a cascade upon their release which ultimately leads to the 

activation of transcription factors that upregulate protein chaperones, proteasome components, 

and with continuous activation, turns on GADD-153/CHOP (C/EBP homologous protein) which 

can activate apoptosis (see Figure 4). 

1. IRE1 

 Upon release from GRP78, IRE1 transautophosphorylates, activating its RNase activity. 

Its target is X-box-binding protein 1 (XBP-1) transcript, of which it removes an intron, and 

XBP-1 is re-ligated into XBP-1
s
. There are multiple targets of XBP1

s
, including ER protein 

chaperones and upregulation of itself (63-65). However, beyond the traditional genes it activates, 

XBP-1 action has now been shown to be more diverse. 
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 In fact, XBP-1‟s ability to induce many ER proteins, and increase expansion of the rough 

ER (66) has demonstrated its necessity in ER biogenesis. Specific and elaborate knockout 

models have demonstrated this further when the ER was poorly developed and secretory cells 

subsequently failed to function (67, 68). Sriburi et. al have found that overexpression of XBP-1
s
 

in pre-adipocytes induces upregulation of the rate limiting enzyme in phosphatidylcholine 

synthesis (CTP:phosphocholine cytidylyltransferse or CTT) (66, 69). As this is the major 

phospholipid found in the ER membrane, it follows that XBP-1 increases ER biogenesis by both 

stimulation of ER proteins and membrane components.   

2. PERK 

 The PERK pathway is another UPR leg. When released, PERK transautophosphorylates, 

activating its kinase domain. The major result of this is phosphorylation of eukaryotic translation 

initiation factor 2α (eIF2α). In the phosphorylated state, this essential component of the 

translational machinery cannot recycle GTP, inhibiting general translation but at the same time 

increasing the translation of mRNAs which contain internal ribosome entry sites, such as 

activating transcription factor (ATF)-4, BiP/GRP78, and SREBP-1 (70-72).  

 ATF-4 is a well studied protein involved in the UPR [reviewed in (73)]. This 

transcription factor is heavily involved in increasing amino acid metabolism and protein 

transport [reviewed in (74) and (75)]. Importantly, ATF-4 also upregulates stress-related 

transcription factors ATF-3 and CHOP. CHOP is a central transcription factor involved in 

cellular perturbations, including inhibition of adipocyte differentiation (76-78), and ultimately 

inducing apoptosis. However, this is another example of the necessity of balance, as although 

high induction of ATF-4 will lead to CHOP activation, complete absence will affect adipose 

lipogenesis (79).  
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Figure 4. Depiction of the UPR. At times of ER stress, the UPR is activated to aid in return to 

homeostasis. Shown are the central proteins and downstream transcription factors involved in 

this pathway. BiP (GRP78) - ER protein chaperone; PERK, ATF-6, IRE-1 - ER transducer 

proteins; ATF-4, XBP-1
S
, ATF-6 - downstream transcription factors. 
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SREBPs are additional transcription factors found in the ER membrane. There are three 

isoforms - SREBP-1a, -1c, and -2. SREBP-1c is involved in fatty acid synthesis and lipogenesis, 

-2 in cholesterol synthesis, and -1a in both pathways. The SREBPs are retained in the ER via 

insulin-induced gene (Insig) binding to SREBP cleavage activating protein (SCAP)-bound 

SREBP. At times of sensed decreases in cholesterol or fatty acids, SCAP-SREBP dissociates 

from Insig and relocates to the Golgi where SREBP is cleaved by two site proteases (S1P and 

S2P). The active form then translocates to the nucleus, activating genes for synthesis such as 3-

hydroxy-3-methylgutaryl-CoA (HMG-CoA) synthase, HMG-CoA reductase, squalene synthase, 

acetyl-CoA carboxylase, and fatty acid synthase, as well as upregulation of themselves. Thus, 

ER stress induction not only alters protein production, but also cholesterol and fatty acid 

synthesis. 

 Normally, SREBPs are released when there is a sense of depletion of cholesterol or lipids 

in the ER membrane. However, SREBP1 processing is also regulated through PERK-eIF2α. In 

fact, knockout of PERK substantially decreases active SREBP1 in mammary glands (80). This is 

most likely a result from the recent finding that SREBP1 contains an internal ribosome entry site 

(70). Therefore, activation of ER stress will redundantly lead to active SREBP1 through both 

upregulation of translation and release protein from the membrane.  

3. ATF-6 

 There are two genes encoding ATF-6, α and β. Both produce functional ATF-6 ER 

transmembrane proteins that can play redundant roles for one another. When either/both are 

released from GRP78, they translocate to the Golgi via a localization signal that was hidden 

when in the bound form. In the Golgi, ATF-6 is cleaved by the same proteases that process 

SREBPs, releasing the active cytoplasmic domain which is a transcription factor. ATF6α 
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heterodimerizes with XBP-1
s
 and upregulates genes with the ER stress-response element in their 

promoters, including GRP78 (81) and other ER chaperone proteins as well as XBP-1 and CHOP 

[reviewed in (82)]. 

    C.  ER Stress and Induction of Apoptosis 

 When activation of the UPR fails to bring a cell back to homeostasis, chronic ER stress 

can induce apoptosis. Activation of apoptosis occurs through a few routes, one of which is the 

transcription factor CHOP, and another is IRE1 activation (83, 84) (Figure 5). In addition, there 

exist multiple caspases resident in the ER (85), but it is still not elucidated how directly these 

caspases are involved in UPR-induced apoptosis, or if the mitochondrial apoptotic pathway is 

more essential. A major basis for confusion lies in the fact that calcium leaks from the ER at this 

late stage, triggering the mitochondrial stress pathway (86, 87).  

 Multiple investigators have noted the link of CHOP and apoptosis induction (88, 89). 

Indeed, overexpression of CHOP promotes cell death while overexpressing GRP78 can block 

CHOP-mediated cell cycle arrest and apoptosis (90). This role of CHOP may be directly 

attributed to CHOPs ability of transcriptionally repressing anti-apoptotic Bcl-2 (91, 92). CHOP 

also transcriptionally activates ER oxidase 1α (ERO1α), which oxidizes the ER, promoting 

disulfide bond formations. However, an accumulation of ERO1α may promote hyperoxidation in 

the lumen, inducing release of Ca
2+ 

and downstream apoptotic inductions (89, 93, 94). 

D.   ER Stress and Activation of the Inflammatory Cascade 

 Many inflammatory pathways can be traced to the activation of mitogen-activated protein 

kinases (MAPKs). MAPKs are serine-threonine protein kinases expressed in most cell types. The  
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Figure 5. Potential pathways between ER stress activation and cellular apoptosis. After 

prolonged ER stress, cells may undergo apoptosis do to inability to return to homeostasis. As 

demonstrated in the current literature, after prolonged ER stress, apoptosis can be induced 

through CHOP upregulation (A). In addition, activated IRE1 can lead to upregulation of CHOP, 

activating apoptosis downstream (B, C). Reprinted by permission from Macmillan Publishers 

Ltd: [Nature Publishing Group] (87), 2004. 
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three „most important‟ and well known MAPK pathways are Extracellular Signal-Regulated 

Kinases (ERK), c-Jun NH(2)-terminal protein Kinases (JNK), and p38 kinases. ERK 1 and 2 are 

involved in „pro-growth‟ cascades, often being triggered by growth factors and cytokines. The 

p38 kinases are heavily involved in cytokine expression in immune cells, and as such, are targets 

of research in areas such as asthma and autoimmunity. The pathway of interest here, JNK, is 

activated upon stress responses that inhibit protein synthesis, such as ER stress (95). Activation 

of the JNK pathway is often investigated during drug research since it can be activated in 

numerous ways, induces inflammatory cytokine production, and is linked to cell death/apoptosis 

(96, 97). 

 Although it was known that ER stress could activate JNK (95), it was Urano et. al who 

demonstrated it was through the IRE1 pathway (83). This direct connection has given a secure 

base of an ER stress activation and inflammatory disease link. HIV PI-induced risk factors of 

atherosclerosis, as well as atherosclerosis itself, have inflammatory components. Therefore, the 

issue of ER stress-induced inflammation will continue to be discussed in subsequent sections. 

V. Autophagy  

 A.  Autophagy Pathways  

 Autophagy was first defined in yeast, and has since been described in all eukaryotics. In 

yeast, autophagy serves to aid in times of starvation, while induction of the pathway in mammals 

is increasingly more diverse but is still essentially a self-protective cellular pathway. In 

mammals, autophagy can be activated by multiple stimuli including viral infection, perceived 

starvation, organelle dysfunction, and even ER stress. However, just as in the case of the UPR, 

autophagy has the ability to increase cellular damage or cell death when over-stimulated. This 
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has added autophagy as a third class of cell death (98), beyond the classical apoptotic and 

necrotic pathways. 

 There are three main subdivisions of autophagy - macroautophagy, microautophagy, and 

chaperone-mediated autophagy. These three pathways differ by how cytoplasmic components 

are delivered to the lysosome. Macroautophagy is the classical pathway first described in yeast, 

where cytoplasmic constituents are sequestered in autophagosomes, which later fuse with a 

lysosome to degrade the material for recycling or energy. In contrast, microautophagy occurs 

when a lysosome engulfs the material directly through invagination of its own membrane (99, 

100). Chaperone-mediated utilizes a specific protein signal (KFERQ) that is recognized by 

HSC70 chaperone to traffic a protein directly to the lysosome [reviewed in (101)]. In addition, as 

the autophagic field expands, other pathways are continuing to be identified. However, it is not 

clear if these subsets are separate autophagic pathways or just alterations from the three 

pathways described above. For example, mitophagy, when mitochondria are selectively degraded, 

is most likely one selective form of microautophagy (99, 102). 

 Macroautophagy is the classical and well-understood pathway of autophagic research. It 

is non-specific in its uptake of material, and may be a major pathway by which lipid stores are 

regulated in cells (103). As it is the focus during our investigations, it will be the implied 

pathway when speaking of autophagy induction. 

1. Formation of Autophagosomes 

 As stated above, cell death can occur through autophagy. Visualization of a cell in the 

midst of death can allow determination of which pathway is taken. In necrosis (accidental death), 

swelling of the cell and its organelles occurs due to loss of plasma membrane integrity and a 

consequent influx of ions and fluid. Apoptosis (self-destruction) is noted by shrinkage of the cell 
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and its organelles as the plasma membrane remains intact longer. In addition, apoptotic cells 

often have chromatin condensation, nuclear fragmentation, and blebs of membrane later in time. 

Autophagy is unique in that the cells appear under normal morphology at low magnification, yet 

upon close inspection, there is vacuolization in the cytoplasm and autophagosome formation. 

 At initiation of autophagy, autophagic-specific proteins begin to aggregate at a cistern-

double membrane termed the pre-autophagosomal nucleation site (PAS) (104). This membrane 

than elongates and encloses around the cytosolic component(s), and is termed the 

autophagosome (105). Via vesicle-mediated transport, the autophagosome starts to accumulate 

lysosomal membrane proteins and pumps (106), and later fuses with a lysosome at the outer 

membrane, leaving the inner membrane to contain the cytoplasmic content within the lysosome 

(107). The final step is degradation of the inner membrane and components by hydrolases, and 

transport of products into the cytoplasm for metabolic purposes. 

 Each vesicle in this pathway can easily be defined by its properties. The initial 

autophagic vacuole (AVi), or autophagosome, is at physiologic pH without any lysosomal 

proteins. In the degradative autophagic vacuole (AVd) or late autophagosome, the vesicle is 

acidic and contains lysosomal proteins. Another distinguishing factor of these two vesicles from 

other organelles is their smoothness of membranes compared to the lysosome and ER, and their 

half-lives are actually only 8 minutes (108). After outermembrane fusion of the autophagosome 

with a lysosome, the vesicle is determined an autophagolysosome (109). 

2. Few Key Proteins 

 There are currently at least 31 proteins identified to be specifically involved in autophagy 

(110) (see Figure 6 for a simplification of their involvement). Most of these proteins were first 

identified in the yeast model, and are named autophagy-related genes (Atg). Many of these have 
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analogues in mammalian cells, and have been named differently when found in these models, 

confusing the nomenclature of present day investigations. Both names will be given here to 

clarify the discussion below. 

 In addition to Atgs, other proteins involved in autophagy induction but not specific to 

autophagy also exist. For macroautophagy, the most classically understood activation is that of 

nutrient deprivation. In a nutrient-rich environment, growth factors stimulate the eukaryotic cell, 

and activate P13K Class I proteins. These proteins activate AKT, which results in activation of 

serine/threonine protein kinase target of rapamycin complex 1 (TORC1), an indirect inhibitor of 

Atg1 and direct inhibitor of Atg13. Hence, lack of nutrients leads to Atg1 activation. 

Active Atg1/ULK1 and Atg13 associate with each other and translocate to the PAS. 

Inhibition by TORC1 can occur at this point via phosphorylating Atg13, destabilizing this 

complex. Nevertheless, after Atg13-Atg1/ULK1 is associated with the membrane, Atg17/FIP200 

is localized to the complex, which leads to the recruitment of the transmembrane protein Atg9. 

Atg9 is particularly important as it membrane sequesters, allowing elongation of the PAS (111). 

 In addition to Atg9, the Atg13-Atg1 complex also activates Atg6/Beclin1, allowing the 

interaction with P13K class III proteins. The Atg6-PI3K complex recruits Atg14, and together 

activates the next complex that includes Atg12. Atg12 is conjugated to Atg5 via the catalysis of 

Atg7 (an ubiquitin E1-like enzyme) and Atg10 (E2-like). Atg12-Atg5 interacts with Atg16L, 

oligomerizes, and is involved in the recruitment of Atg8/LC3.  

3. LC3 and Importance in Autophagy Detection 

 LC3 was first identified as microtubule associated protein light chain 3 (MAP-LC3). It is 

a constitutive cytosolic protein, activated when cleaved by a cysteine-protease (Atg4). Once 

cleaved, Atg7 (E1 like) and Atg3 (E2-like) catalyze the conjugation of exposed C-terminal  
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Figure 6. Schematic diagram depicting the molecular aspects of autophagosome formation. 

Shown is a simplified depiction of autophagy induction to autophagosome formation. As eluted 

to in the text, the complexity of autophagy, and numerous proteins involved, complicates the 

ability to draw the pathway as known today. Modifed by permission from Experimental Biology 

and Medicine(112),  2011.  
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glycine to phosphatidylethanolamine (PE) (112, 113). In this conformation, LC3 can associate to 

both the inner and outer limiting membranes of the phagosome. It is important to note that 

activation of LC3 is necessary, but not sufficient, as many other proteins and processes 

contribute to vacuole formation (113). 

 LC3 has been used extensively in autophagy research. During Western blot, one can 

analyze activation of LC3 as the free cytosolic form (I) migrates a Bis-tris gel slower than the 

lipidated form (II). During autophagy, the II:I ratio increases as more LC3 is activated (114). 

Another common method utilizes a plasmid expressing GFP-tagged LC3. After stably 

transfecting a cell line, autophagy increase can be followed by fluorescent-punctate formations in 

the cytoplasm as the expressed GFP-LC3 relocates to autophagosomes (115). 

B.    Autophagy and ER Stress 

 Autophagy and ER stress pathways are not disconnected from one another as previously 

assumed. In contrast, activation of both can aid in cell survival at times of stress. Autophagy 

offers an alternative pathway for degradation of proteins when ER-activated proteasomes can no 

longer handle the load (116-121). In addition, activation of cell death of each pathway may be 

interlinked. Classic knowledge is based on ER stress activating apoptosis through CHOP 

upregulation [reviewed in (89)] and autophagy-mediated cell death via a completely separate 

process. However, recent findings demonstrate that these two cell death pathways are interlinked 

[partially reviewed in (122)].  

Prolonged UPR activation has been shown to lead to autophagy-induced cell death (117), 

and inhibition of autophagy increases cell viability with prolonged ER stress (123-125). The 

exact mechanism of how ER stress induces autophagy is still being investigated. Recently, it was 

found that ER stress activation can inhibit Akt phosphorylation, the upstream inducer of 
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autophagy at times of perceived starvation (126). However, the responsible protein(s) are still not 

known, and may even be cell-type specific [reviewed in (127)].  

Another link is hypothesized to occur through the PERK pathway of the UPR (128, 129). 

Some studies have shown that PERK phosphorylation of eIF2α leads to an upregulation of LC3 

(120). Yet, it has not been elucidated if this is directly due to eIF2α phosphorylation inducing 

LC3 translation, or through ATF-4 activation increasing Atg12 transcription (130, 131).  

  Even more, one study has seen a strong link between activation of ER stress, increased 

autophagy induction, and increased SREBP activity leading to lipid overload in hepatocytes (57), 

although a mechanism was not proposed. Another group has demonstrated the capability of 

SREBP-2 to directly upregulate the expression of autophagy essential proteins (132), giving 

significance to a previous finding that cholesterol depletion leads to autophagy induction in 

multiple cell lines (133). Although SREBPs are not a current forefront of proposed activators of 

autophagy, it is probable that at times of cellular stress SREBPs are involved in processing lipid 

droplets through the autophagic pathway for ATP production. 

VI. Adipocytes 

A.   Cellular Properties  

      1.         Physiology 

In the last two decades, the complexity of adipose tissue has become apparent. 

Investigations surrounding the biological impact of obesity, insulin resistance, and the Metabolic 

Syndrome have surged, resulting in a more intricate understanding of „fat.‟ Now we know that 

adipose tissue (AT) is not only highly specialized to store energy for long term, but also is a 

central endocrine organ. Therefore, AT is inherently involved in the interplay of inflammatory 
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cascades and energy metabolism, which are important players in metabolic disorders. Even 

more, sick fat, or adiposopathy, has been coined an independent endocrine disease (134). 

 AT is an assortment of adipocytes, macrophages, and endothelial cells. In addition, these 

different cell-types are connected to one another through a complex mixture of proteins and 

proteoglycans in the extracellular matrix. Nevertheless, there is no rejecting the centrality of 

adipocytes in this tissue. 

 To understand the adipocyte, it is important to grasp the path it takes to become a mature 

cell. Adipocytes begin first as mesenchymal stem cells (MSCs) (although this has recently been 

debated as touched upon later). MSCs are multipotent stem cells, and as such, can follow 

multiple pathways to terminate as an osteoblast, chorocyte, or adipocyte (135, 136). 

Determination of lineage is dependent on small molecule signals and the extracellular 

environment (137), though complete understanding of this process is still lacking (136). Within 

adipogenesis, the normal pathway begins with MSCs proliferating and then differentiating into 

adipose-derived stem cells (ASCs) (138), most likely through activation via bone morphogenic 

protein 4 (BMP) (139). ASCs continue with proliferation and differentiation into fibroblast-like 

pre-adipocytes which are particular cells that can migrate, proliferate, and further differentiate 

into round adipocytes (140). 

 Pre-adipocytes are fibroblastic in both morphology and gene characteristics. In fact, a 

common cell line used in the study of adipocyte metabolism and differentiation is 3T3-L1, which 

is also commonly utilized in fibroblast studies. Induction of differentiation from the pre-

adipocyte to mature adipocyte is rather simple, and can translate between cell cultures of 

differing species with slight modifications. The mechanism of a differentiation adipocyte is 

nonetheless a bit complex. 
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  2.    Differentiation 

 Understanding of adipogenesis began with cellular models, though more is now known 

through tissue modeling and in vivo studies. In vitro, the initiation of differentiation occurs at 

growth arrest via cell-cell contact. In tissue, this occurs through a combination of cell contact 

with other pre-adipocytes, as well as signals from neighboring adipocytes and stromal cells. 

After induction, the profile of genetic expression changes through adipogenic transcription 

factors, including peroxisome proliferator activated receptor γ (PPARγ), retinoid X receptor 

(RXR), and CCAAT enhancer binding proteins (C/EBP)α and β. 

   a. C/EBPs 

 The C/EBP family is named after their ability to interact with a cytidine-cytidine-

adenosine-adenosine-thymidine (CCAAT) box motif on DNA, present in many promoters. There 

are six members in the family, of which α, β, δ, and δ are involved in adipocyte differentiation. 

C/EBPβ and δ are involved early in the differentiation process – their maximal protein levels in 

3T3-L1 culture is within four hours of induction, and only lasts two days (141, 142). C/EBPβ is 

transcriptionally activated by cAMP response element binding protein (CREBP) (143), and 

transcriptionally activates C/EBPα and PPARγ for the next steps of differentiation. C/EBPβ and 

δ may have a redundancy in action, as knockout of either one alone results in normal adipose 

physiology in mice, but a double knockout have markedly reduced AT mass (144). After 

activation, both C/EBPα and PPARγ autoinduce, and coinduce, to keep levels high throughout 

differentiation (145-147). 

   b. PPARγ 

 PPARγ is arguably the most important of these factors. For one, overexpression of 

PPARγ in fibroblasts induces adipogenesis without any other stimulation, while a dominant 
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negative mutant of the protein results in inhibition of full differentiation (148). Knockout of 

PPARγ in mice results in embryonically lethal day 10 due to malformation of the placenta. The 

heterozygote mouse model gives us more information as these mice develop very minimal AT 

(149). 

 PPARγ is a member of the PPAR family, which also includes α and β/δ nuclear receptor 

members. Upon activation with ligands, these PPARs dimerize with RXR, and act as 

transcription factors to control lipid metabolism and fuel dispersion. In AT, PPARγ increases 

insulin sensitivity as well as regulates TG storage, besides its role in adipogenesis (150). As 

such, a dominant-negative form of PPARγ in adipose tissue leads to insulin insensitivity, 

decreased glucose metabolism, and increased release of FAs – which can also be an issue 

clinically (151). 

 There are two isoforms of PPARγ, of which the second is dominant in adipocytes 

(PPARγ2), and most important in adipogenesis (152). There are five domains of the protein: A/B 

at the N-terminus, C which is the DNA-binding domain (DBD), flexible hinge region (D), ligand 

binding domain (E) and F at the C-terminus. The DBD binds to peroxisome proliferator hormone 

response elements (PPREs) on the genomic DNA (sequences of which are 

AGGTCAXAGGTCA). 

 PPARγ has a distinct and broad range of ligands including prostaglandin, polyunsaturated 

fatty acids (FA), non-steroidal anti-inflammatories, and the glitazone class of diabetic 

medications. Once activated, PPARγ goes on to transcriptionally activate a large number of 

adipose genes including adipocyte fatty acid-binding protein aP2 (153), lipoprotein lipase (154), 

lipid droplet-associated protein cidec (155), lipase ATGL (156), and perilipin (157). The trend of 

these genes revolves around lipid metabolism and lipid droplet formations.  
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  c.       Other Important TFs 

 Another protein that has been marked for involvement in adipogenesis is ADD1 

(adipocyte determination and differentiation-dependent factor)/SREBP1. ADD1 and SREBP-

1a/1c are all encoded in the same gene via alternative promoters, thus giving the protein involved 

here a double label (158). As discussed above, SREBPs are heavily involved in cholesterol and 

lipid synthesis, and ADD1/SREBP-1c does much the same within the first day of adipogenesis 

(159). 

  3.     Lipid Droplet 

 The complexity of lipid droplet (LD) formation has been increasingly realized in the past 

decade. LD is now considered a dynamic intracellular organelle by many experts (160). In 

adipocytes, the LD is large (most other cells it is only 1/50
th

 of that found in adipocytes). At its 

core, the droplet is composed of TGs and cholesterol esters, surrounded by a phospholipid 

monolayer. In addition, there is a coat of proteins with unique functions to help package the TGs, 

as well as protect the droplet. 

  a.  LD Proteins 

The knowledge of LD protein functions are in the beginning stages, while control of their 

expression and the targeting to the LD are unknown. The most studied protein is perilipin, which 

is so similar to adipose differentiation-related protein (ADRP, also called adipophilin) and tail-

interactin protein (TIP47) in sequence that these three proteins are placed into one protein family 

(PAT for Perilipin/ADRP/TIP47). In addition, two more proteins have been added to this family, 

S3-12 and OXPAT, which also share the N-terminal motif of the PAT domain.  

Perilipin is a regulator of lipolysis. The half life of perilipin associated to a LD is about 

40 hours, while free perilipin is quickly degraded (161). At this position, perilipin is also 
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associated with Comparative Gene Identificant-58 (CGI-58) (162), which together inhibit 

hormone sensitive lipase (HSL) and adipose triglyceride lipase (ATGL) from gaining access to 

the inner TGs.  

In unstimulated conditions, perilipin remains associated with CGI-58 on the LD droplet, 

and HSL is sequesterd in the cytosol. With cellular stimulations that increase cAMP levels (ex. 

catecholamines and glucocoricoids), protein kinase A (PKA) is activated and multi-

phosphorylates perilipin (163), as well as HSL. These phosphorylations result in activation of 

lipolysis two fold. First, phosphorylated perilipin no longer associates with CGI-58. Released 

CGI-58 then activates ATGL, allowing its interaction with LD. ATGL cleaves TG and releases 

one FA and diacylglycerol (163). At the same time, phosphorylated HSL colocalizes with 

phosphorylated perilipin (164), where it cleaves the diacylglycerol to release another FA and 

monoacylglycerol. The last is cleaved by monoacylglycerol lipase to release the last FA and a 

glycerol (165). 

In addition to perilipin and CGI-58, other LD proteins include TIP47, a ubiquitously 

expressed protein. TIP47 coats early forming LDs (166, 167), and has also been shown to 

compensate for loss of ADRP (below) (168). Hickenbottom et. al were able to obtain the crystal 

structure of TIP47 in 2004, and found that there are many parallels of TIP47 and apoliproteins A 

and E structures, as well as a high structural match with N-terminal apoliprotein E (164). This 

finding is functionally important, demonstrating structural similarities of cellular LDs and serum 

lipid droplets that may be exploited in the future.   

ADRP is another ubiquitously expressed protein (169), constitutively bound to the LD. 

Functionally, ADRP replaces TIP47 on the small LDs. During the progression of differentiation, 

ADRP RNA and protein levels decrease while perilipin proteins increase and coat larger LDs of 
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late adipogenesis (166, 167, 170). However, in other cell types that store lipids, such as 

hepatocytes, ADRP and perilipin both equally coat the LD. As such, ADRP can compensate for a 

loss of perilipin at least to an extent (170-172). 

 b.  LDs and the ER  

Formation of LDs is at this time only hypothesized and not concretely described. One 

highly supported model portrays the LD to bud off the ER membrane at points of neutral lipid 

accumulations. Others hypothesize the LD and ER remain attached, allowing the accumulation 

and recycling of proteins (173). 

In an elegant study done by Robenek et. al, freeze-fracture replica immunolabeling 

(FRIL) was used to identify where LD proteins were located (174). In their images, the ER 

appears to be holding the LD „like an egg-cup,‟ with the ER adjacent to, and not interconnected 

with, the LD membrane. ADRP and perilipin were found to be located in the limiting membrane, 

at the interface of the core lipid and cytoplasm, and ADRP was found in the ER membrane in 

concentrated areas that were the closest distance to LDs.  

Despite the controversy of the origin of the LD, the importance of the ER in LD 

biogenesis and maintenance remains. Of particular interest in this arena is 

CTP:phosphocholinecytidylyltransferase (CCT), the rate limiting enzyme for 

phosphatidylcholine (PtdCho) synthesis (a major lipid in LD, the other being 

phosphatidylethanolamine). This enzyme, as well as others involved in this pathway, is enriched 

at the RER, however, it is unclear what signal occurs to stimulate/inhibit CCT. What is known is 

that lack of CCT can result in fusion of LDs (175). 

      B.    Adipose Tissue 

 The majority of the population despises AT due to its depleasing asthetic nature.  
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 Figure 7. Depiction of the lineage and maturation of adipocytes. The start of adipogenesis 

can be traced to the mesenchymal stem cell (MSC) differentiating to an adipose-derived stem 

cell (ASC). Pre-adipocytes are then induced by small molecules such as insulin growth factor 

(IGF)-1 receptor activation, as well as cell-cell contact. Transcription factor C/EBPβ is 

subsequently induced, leading to the activation of PPARγ and C/EBPα transcription factors. At 

this point, upregulation of proteins necessary in lipid droplet formation occur. The last stage 

depicted here is activation of hydrolysis at the lipid droplet by cellular cAMP increases (see 

Section VIA. 3a.). 
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However, AT is a complex organ responsible for organ insulation, excess energy storage, and is 

heavily involved in the endocrine system (176, 177). The condition of AT can determine 

lipidemia and insulin sensitivity, as well as the inflammatory state of the body. 

 There are slight differences between AT depots, and this may stem from embryogenesis. 

AT is often suspected to arise from the mesoderm (178), but some fat pads may actually be 

generated from the neural crest (179). The differences between depots are seen both chemically 

and physiologically. It was found in the late 1990s that preadipocytes isolated from different 

depots have different adipogenic induction responses (180) and gene expressions (181), but these 

differences are still not well understood.  

Physiologically, it has been long understood that those with increased visceral adipose 

mass have a higher risk of cardiovascular disease, although those with the same BMI but more 

subcutaneous mass do not have the same risk. However, the differences that lead to detrimental 

risks are still not understood. Basic researchers have probed the physiology of visceral versus 

subcutaneous depots for a decade now with no concrete results. In HIV treatment, different drugs 

have differential effects on fat tissue - the RTIs seem to decrease subcutaneous depots while the 

HIV PIs increase visceral adipose mass (182) (termed HAART-induced lipodystrophy). The 

result is a substantial increased risk of cardiovascular disease in HAART-treated patients, and 

this can be attributed directly to PIs (22). 

 C. ER Stress in the Adipocyte 

 1. Basal Involvement of the UPR in Adipogenesis 

 As previously discussed, ER stress does not have a clear-cut product. Although the UPR 

is understood to aid a cell in returning to homeostasis, it can lead to detrimental cellular effects 

when overstimulated, and even when understimulated. One such example of this is XBP-1
s
. In 
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the adipocytes, the close interplay of ER biogenesis and LD formation relies on tight control of 

XBP-1
s
. As previously discussed, overexpression of XBP-1

s
 can lead to upregulation of CTT 

(66, 69), and knockout inhibits pre-adipocyte differentiation with only XBP-1
s
 (not unspliced) 

able to rescue this phenotype (183).  

In vivo, XBP-1 knockout mice die in utero (67). Therefore, to study the importance of 

XBP-1 in AT, we must turn to a model that expresses XBP-1 only in the liver. These mice also 

prematurely die. In fact, death occurs during the neonatal starvation period, partially due to 

negligible white adipose mass (69).  

 In addition to the role XBP-1 may play in CCT and LD biogenesis, XBP-1
s
 has been 

shown by Sha et. al to upregulate C/EBPα (183). Conversely, C/EBPβ increases transcription of 

XBP-1. Therefore, XBP-1 is integral in the differentiation process, playing roles in both 

maturation of the cell and transcriptional activities. 

 Beyond the IRE1-XBP1 pathway, other components of the UPR may be involved in 

adipogenesis, although more investigations need to be completed to clarify these mechanisms. 

For the ATF6 pathway, knockout mice of either ATF6α or β do not show any striking 

physiological changes as there is redundancy between the two isoforms. However, it is proposed 

ATF6α is the more essential isoform for the ER stress pathway as ATF6α and not β induces 

genes with the ER stress-response element in their promoters (184). More important in this 

section, ATF6α can upregulate XBP-1. As ATF6α and XBP-1
s
 can heterodimerize, it should be 

determined if this formation is important in XBP-1 upregulation of C/EBPα or CCT. 

 SREBP-1c is another transcription factor heavily involved in adipogenesis. Although not 

deemed a UPR component, SREBPs can be activated during ER stress. SREBP-1c has a dual 

name of adipocyte determination and differentiation 1 (ADD1). Overexpression of 
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ADD1/SREBP1c leads to an increase of LD formation in pre-adipocytes (185), and this may be 

due to activation of a lipid activating PPARγ (186). However, conditional overexpression in 

mice inhibits normal white adipose tissue growth (185). In vivo, PPARγ levels were lowered 

compared to wild-type mice. The paradoxical differences of in vivo and in vitro models may be 

due to timing of knockdown of SREBP1c, but this needs to be further investigated, especially as 

SREBP1c has more recently been shown to directly activate C/EBPβ (187).  

Lastly, the PERK pathway has also been found to be important during differentiation of 

adipocytes in vitro. PERK to ATF-4 activation has been shown to be important in activation of 

genes involved in lipogenesis (80). Knockdown of this pathway does not inhibit adipogenesis, 

but reduces the accumulation of lipids involved in this process. More significantly, ATF-4 

activates CHOP, a known inhibitor of adipogenesis. CHOP can heterodimerize with C/EBP 

transcription factors (hence it‟s name). When in this conformation, the C/EBPs can not bind to 

their normal DNA targets, ultimately leading to inhibition of their actions, including activation of 

adipogenesis (76, 78).  

2.   UPR Activation in AT and Disease 

 Activation of the UPR has the potential of inducing deleterious cellular effects. In AT, 

the majority of this is manifested as inhibition of pre-adipocyte differentiation and induction of 

the inflammatory cascade, of which both are induced by HIV PIs. 

 The description of the intrinsic involvement of the UPR in adipogenesis above 

demonstrates how alteration of the UPR can influence differentiation. Direct examples of this 

have been shown in previous studies. For example, Basseri et. al treated murine 3T3-L1 cells 

with the chemical chaperone 4-phenylbutyrate, a repressor of the UPR, which attenuated 
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differentiation in this cellular model (188). At the same time, Shimada et. al demonstrated that 

the compound K-7174 could inhibit differentiation through overactivation of ER stress (189).  

HIV PIs have been shown to differentially affect adipogenesis (28-36). However, results 

in the literature are contradictory and lack mechanistic explanations. For example, a few results 

state RITV does not inhibit differentiation of adipogenesis, and others state it significantly 

inhibits this pathway. Reasons for such contradiction derive from differences in differentiation 

techniques and subjectivity of certain assays. In addition, most studies focused on the possibility 

of inhibition of differentiation, and not the mechanism of this phenomenon. From the above 

information give, it could follow the mechanism underlying HIV PI-induced alteration in 

adipogenesis is induction of ER stress. 

Many metabolic diseases have been shown to have underlying pathology in AT. In 

addition to altering capacity of lipid storage, these diseases also have underlying inflammation. 

As previously noted, there is now known to be a direct link between the UPR and inflammation. 

One of the first cell-types demonstrated to have this link was macrophages. Here, it has been 

repeatedly demonstrated that lipid-laden macrophages (the core of an atherosclerotic plaque) 

secrete multiple pro-inflammatory cytokines such as TNF-α and IL-6. In addition, HIV PIs can 

induce this pro-inflammatory state directly in this cell type through the activation of the UPR and 

upregulation of the mRNA binding protein HuR (51, 52, 190, 191).  

 Investigations into mechanisms underlying obesity and diabetes has demonstrated how 

inflammation in AT can detrimentally alter human physiology. With increasing overload, 

adipocytes begin to hypertrophy, becoming stressed and signaling this with a release of 

proinflammatory cytokines. These cytokines cause an infiltration of circulating macrophages, 

which engulf over-stressed or dying cells, forming characteristic crown-like structures. 
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Interestingly, HIV patients on HAART therapy appear to be in the same state as an obese 

individual in terms of inflammation and dysfunction in AT. Patients often have a decrease in 

insulin sensitivity, as well as having dyslipidemia and liver disease as previously discussed.  

 The inflammatory cascade has been shown to be induced by HIV PIs in adipocytes (192-

194). In addition, this activation may be an underlying factor of inhibition of differentiation. In 

fact, exposure of pre-adipocytes to TNF-α alone is enough to inhibit induction of PPARγ and 

C/EBPα (195). However, the mechanistic induction of the inflammatory cascade in adipocytes is 

the key to determine how HIV PIs have these detrimental affects.  

 Even beyond the potential of inhibiting differentiation, induction of inflammation can 

lead to insulin resistance in AT (196, 197). This connection is already widely known, and will 

not be discussed in further detail here. For an in-depth discussion of the connection between 

inflammation and insulin resistance, please see reviews [(198, 199)]. Instead, our focus now 

turns to ER stress link with insulin resistance. 

 A key study in this field was done by Djedaini and colleagues. When a human adipocyte 

cell line was treated with LOPV, there was an increase of ER stress activation as well as a 

decrease of IRS1 phosphorylation (54). What linked these two phenomena was eIF2-α 

phosphorylation. When cells were treated with salubrinal, a small molecule that specifically 

inhibits eIF2-α phosphorylation, there was a slight decrease in IRS1 phosphorylation. However, 

when they added minimal concentrations of LOPV with salubrinal, there was a significant 

decrease of IRS1 phosphorylation, suggesting a synergistic effect of the two drugs and the role 

eIF2α plays in LOPV-induced adipocyte insulin resistance.  

 Activation of the UPR leading to a decrease in insulin signaling may only be part of the 

story. Others have shown that HIV PIs can actually directly inhibit the glucose transporter (200). 
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It has been proposed that this inhibition induces a starvation-like state in the cell with the 

decrease of intracellular glucose, causing activation of ER stress. This would lead to a decrease 

in insulin signaling, propagating insulin resistance further. At this point, adipocytes would rely 

heavily on lipids, hydrolyzing triglyceride stores and thus increasing NEFA release, causing 

lipotoxicity and insulin resistance at the physiological level. More research is clearly needed to 

determine which pathway or proteins HIV PIs induce/inhibit when they first come into contact 

with an adipocyte. Only then can we be certain of the consequences of a given structure on the 

drugs currently on the market. 

      D. Autophagy and Lipid Metabolism in the Adipocyte  

 In adipocytes, the importance of autophagy and cellular lipid metabolism goes beyond 

what was previously discussed. Of one particular note is that components of the autophagosome 

may be necessary for lipid droplet formations (201). Shibata et. al have demonstrated that LC3-II 

does not only colocalize to autophagasomes, but also LDs in hepatocytes and cardiac myocytes, 

suggesting a flux of lipid metabolism in the cell dependent on this pathway (201). These findings 

were followed with an investigation in murine adipocytes, demonstrating that LC3 colocalizes to 

LDs in differentiating cells (202). In addition, siRNA of LC3 drastically decreased the ability of 

adipogenesis (202).  

Beyond Shibata et. al‟s study, knockout models have demonstrated how essential 

autophagy is in adipogenesis. Baerga et. al were able to establish this by first showing the 

significant increase of autophagosome formations during induction of adipogenesis, followed by 

the inhibition of differentiation in a knockout atg5 mouse model (203). Using this model, Baerga 

et. al saw both in vitro and in vivo that inhibition of autophagy restrained maturation of pre-

adipocytes, resulting in a marked reduction of WAT in neonatal mice. Interestingly, when 
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knockout murine embryonic fibroblasts were induced to differentiate, cells that began to mature 

died through apoptosis, while those in the same culture that did not begin to differentiate 

remained alive. This study was followed by another with an adipose-specific deletion of atg7 

(204), a gene encoding an essential protein upstream of Atg5. Interestingly, WAT tissue of this 

knockout model was more characteristic of BAT in both morphology (smaller cells and LDs) and 

enzyme levels. The importance of Atg7 in adipogenesis was confirmed by Sing et. al who 

knockdown the same gene but used slightly different cell lines and mouse model (205). 

However, both groups came upon the same finding that the autophagic pathway is essential in 

adipogenesis.  

The trigger of autophagy activation during adipogenesis is not currently known. PPARγ 

may be involved. In one cancer cell line, it was found that PPARγ targets can then activate the 

autophagy pathway (206). However, there is another study that contradicts these findings (207), 

and such investigations have not yet been repeated in an adipocyte model. Nonetheless, the 

summation of above experiments does demonstrate that autophagy is essential in adipogenesis 

and LD formation. Differing, a decrease of autophagy in the liver leads to lipid overload in 

hepatocytes. Intuitively, the difference lies in the biology of the two cell types, where adipocytes 

are normally storing lipids and hepatocytes are not. In metabolic disease states, it is easy to 

conceive how dysregulation of autophagy could ultimately lead to fatty liver with increased TG 

storage in the liver and decreased storage in AT. 

In addition to its role in adipogenesis, autophagy may help control the inflammatory 

cascade in adipocytes. Adiponectin, the adipocyte-specific anti-inflammatory cytokine, is 

negatively correlated with diseases such as atherosclerosis and insulin resistance. In 
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overexpanded or stressed tissue, there is a decrease of adiponectin secretion (208), and an 

increase of macrophage-inducing TNF-α, IL-6, and MCP-1 as discussed previously. 

HIV PIs have been repeatedly reported to decrease adiponectin, from the RNA level to 

secretion. Interestingly, adiponectin can alleviate ER stress (209). Zhou and colleagues have 

shown that ER stress initiation is sufficient to decrease adiponectin release. In animal models, 

they reported stabilization of adiponectin decreased obesity-induced ER stress in AT. Moreover, 

induction of autophagy could alleviate ER stress responses in the cell, stabilizing adiponectin 

secretions. More investigations are neded to determine if upregulation of autophagy could 

ultimately lead to therapeutic options for metabolic diseases. 

However, the understanding of HIV PI-induced metabolic disease does not just center at 

AT lipid metabolism and inflammation, but also other key organ systems including the liver. 

Interplay between the liver and AT is central in lipidemia, serum glucose levels, and potential of 

fatty deposits in the liver. Therefore, the next section will focus on how HIV PIs disrupt normal 

liver metabolism. 

VII.     Liver 

The liver is centrally involved in many metabolic diseases due to its role in lipid 

homeostasis, bile acid synthesis, and gluconeogenesis. In HIV PI-induced metabolic alterations, 

the liver plays a substantial role since it is the first organ to come in contact with this drug class, 

and responsible for their metabolism. Therefore, a majority of investigations focusing on HIV PI 

side effects have focused at the liver and hepatocytes for underlying mechanisms to explain 

disease.  

  Interestingly, some of this work has found that HIV PIs have a similar affect in the liver 

as a Western diet, inducing components of NASH. As discussed in Section IV A, a central factor 
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of NASH is accumulation of hepatic lipids from NEFA and DNL, not the diet as intuitively 

thought. In HIV PI treatment, alteration of AT lipid metabolism can lead to an overload of lipid 

dumping at the liver, which may be the mechanism underlying HIV PI-induced NASH. 

 In addition, insulin resistance is another central manifestation of NASH. In respect to 

HIV PI-induced NASH, it has been hypothesized that although HIV PIs can induce insulin 

resistance in both adipocytes and hepatocytes, HIV PIs first target a decrease in peripheral 

glucose uptake, and chronic treatment alters hepatic glucose production (210, 211). In fact, 

chronic inflammation may be the underlying instigator of insulin insensitivity, especially at 

induction of macrophage infiltration in AT (212). The resulting alterations of lipid metabolism in 

AT, with continuous pathophysiology in the liver, ultimately leads to insulin resistance and liver 

steatosis. 

  While pathology is occurring in AT as discussed previously, HIV PIs also induce insulin 

insensitivity in hepatocytes. Interestingly, the ability of HIV PIs to induce the UPR may be the 

mechanism underlying the hepatic insulin insensitivity (44). In NASH mouse models, as well as 

human liver biopsies of NAFLD patients, a link between increased IRE1α and JNK has been 

found (213, 214). It is hypothesized that the instigator of ER stress (whether it be increased need 

of protein folding or TG synthesis, or drugs such as HIV PIs) increases IRE1α. IRE1α then 

activates JNK, inducing the inflammatory cascade. In addition, JNK inhibits insulin receptor 

action by phosphorylating insulin receptor substrate (IRS)-1.  

 Insulin also inhibits VLDL secretion through suppression of ApoB100 packaging of TGs 

(215-217). Loss of insulin sensitivity would potentially lead to increased VLDL secretion. 

However, during HIV PI pathology, this may not simply be the case. Instead, activation of ER 

stress itself can lead to degradation of ApoB100 (218), which may occur through the autophagy 
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pathway (219). In addition, HIV PIs stimulate active SREBP-1 (49, 220, 221), the transcription 

factor important in de novo lipogenesis. Therefore, increased stimulation to release VLDLs due 

to loss of insulin sensitivity may not be able to compensate for the increased buildup of TGs in 

hepatocytes. 

 Many investigators in this field have proposed that much of HIV PI-induced hepatocyte 

pathology is through ER stress and the UPR (49, 222-224). However, autophagy may also be an 

important player as it now understood to be centrally involved in lipid metabolism. When 

autophagy is directly inhibited in hepatocytes, lipids accumulate in droplets (205), and this is not 

due to increased triglyceride synthesis nor decreased VLDL secretions (225). Mice lacking 

autophagy in the liver have enlarged lipid laden livers with increased triglyceride and cholesterol 

levels (205).  

 At this time, the connection of UPR, autophagy, and hepatic lipid metabolism is not well 

elucidated. Rather, only speculative links of the three have been made. What is clear by the 

information reviewed here is that both the UPR and autophagy are central in cellular homeostasis 

and lipid regulation. Therefore, disruption of one, or both, can have detrimental effects in both 

the AT and liver.  
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CHAPTER II: Materials and Methods 

Materials 

Antibodies: Antibodies against C/EBP homologous protein (CHOP), activating 

transcription factor-4 (ATF-4), X-box-binding protein-1 (XBP-1), Lamin B, phosphorylated and 

total AKT, HuR, CUGBP-1, and horseradish peroxidase (HRP)-conjugated donkey anti-goat IgG 

were bought from Santa Cruz Biotechnology (Santa Cruz, CA). LC3B antibody was obtained 

from Cell Signaling (Danvers, MA). p62, as well as HRP-conjugate goat anti-rabbit and anti-

mouse IgG, were purchased from Bio-Rad (Hercules, CA). 

Protein Assay and Western Blot Analysis: Bio-Rad protein assay reagent, Criterion XT 

Precast Gel, and Precision Plus Protein Kaleidoscope Standards were obtained from Bio-Rad 

(Hercules, CA). Chemiluminescence Reagent was purchased from PerkinElmer Life Sciences. 

For ELISA, all antibodies and avidin-HRP were purchased through eBioscience (San Diego, 

CA), while the standard recombinant mouse TNF-α and IL-6 were obtained from BioLegend 

(San Diego, CA). 

RNA Analysis: RNeasy MinElute Cleanup Kit was purchased from Qiagen. High-

Capacity cDNA Reverse Transcription Kit came from Applied Biosytems. 

Chemicals and Drugs: Ritonavir, lopinavir, and darunavir were obtained from the 

National Institutes of Health (NIH). MK-0518 (Raltegravir) was obtained from Merck. 

Thapsigargin (TG), Dimethyl Sulfoxide molecular biology grade (DMSO), 3-Isobutyl-1-

methylxanthine (IBMX), rosiglatizone, phosphatase inhibitor mix, dexamethasone, and 

hydrocortisone were obtained from Sigma Aldrich (St. Louis, MO).  

Stains: Oil Red O and Nile Red powder were obtained from Sigma Aldrich.  
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Cell Culture Techniques  

Maintenance and Products: All cell lines and primary cells were maintained in 5% CO2 

at 37ºC. Dulbecco‟s Modified Eagle Medium (DMEM) and tryspin with 0.25% EDTA was 

purchased from Gibco (Invitrogen). Newborn Calf and Fetal Bovine Serum were from Atlanta 

Biologicals (Lawrenceville, GA). Penicillin-Streptomycin was bought through CellGro 

(Manassas, VA).  

Murine NIH 3T3-L1: Cells were obtained from ATCC (Manassas, VA), and maintained 

in DMEM containing 10% Newborn Calf Serum (NCS) and 1% Penicillin-Streptomycin (P-S). 

When cells reached 80% confluency, they were subcultured by removing media, washed with 

Phosphate Buffer Saline (PBS), and trypsinized with 0.25% Trypsin-EDTA. To induce 

differentiation, cells were grown to confluency, at which time media was changed to DMEM 

containing 10% Fetal Calf Serum (FCS), 1% P-S, plus 0.5 µM IBMX, 0.8 μM insulin, and 1 µM 

dexamethasone. Cells were cultured for three days and media then changed to DMEM with 10% 

FCS/1% P-S, and 0.8 μM Insulin. After two days, media was subsequently changed to DMEM 

with 10% FCS/1% P-S and cultured until 80% of cells visually appeared differentiated (at least 8 

total days) (226). 

Human Simpson-Golbai-Behmel Syndrome (SGBS) pre-adipocytes were a kind gift from 

Dr. Martin Wabitsch, University of Ulm, Germany (227). SGBS cells were maintained in 

DMEM/F12 with 10% FCS/1% P-S, Biotin, and Pentothenate. Cells were induced to 

differentiate at confluency in serum free DMEM/F12 with 0.01 mg/mL Transferrin, 2x10
-8

 M 

insulin, 1x10
-7

 M cortisol, and 0.2 nM T3. For the first 3 days, this media was also supplemented 

with 25 nM dexamethasone, 500 µM IBMX, and 2 µM rosiglitazone, then these three 
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components were not used for the rest of differentiation. Cells were used in experiments after 

80% of cells visually appeared differentiated (average 2 weeks). 

Adipocyte stem cells (ASC) were a kind gift from Dr. Shawn E. Holt, Virginia 

Commonwealth University. ASC cells were maintained and induced to differentiate in the same 

manner as 3T3 cells, except the DMEM used was low glucose instead of normal high glucose. 

293-FT cells were obtained from ATCC (Manassas, VA). Cells were maintained in 

DMEM containing 10% FCS, 1% P-S, and 1% Non-Essential Amino Acids (NEAA), and kept 

under selection with G418 Neomycin.  

Human HepG2 cells were obtained from ATCC (Manassas, VA). Cells were maintained 

in 10% FBS/1% P-S with 1% NEAA. Cells were subcultured at 90% confluency using 0.25% 

trypsin-EDTA. Cells were treated at 70% density. 

Isolation of Primary Adipocytes: After mice were euthanized, the gonadal fat pad was 

excised from mice and placed in 37°C KRH buffer (1 mM CaCl2, 1.2 mM MgS04, 1.2 mM 

KH2PO4, 1.4 mM KCl, 2 mM Pyruvic Acid, 10 mM HEPES with 4 mM NaHCO3, 130 mM 

NaCl and 0.8333% BSA in water) (228). Tissue was minced until all fragments were no bigger 

than 1 mm and placed in 1 mg/mL Type 1 collagenase (Worthington Biochemical) in KRH, and 

digested for 30 min in a rotating water incubator at 37°C. Suspension was filtered through a 20 

µM flat filter, washed two times in fresh KRH to remove bound collagenase, and full adipocytes 

removed from the top layer with a Pasteur pipette. The remaining solution was centrifuged at 300 

g for 5 min, supernatant removed, and pellet resuspended in Primary Medium (DMEM 

containing 10% FBS, 1% P-S, 3 µM Biotin, 100 µM ascorbic acid, 4 nM insulin and 8.3 mM L-

glutamine). Full adipocytes were also plated in Primary Medium, as well. 
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After confluency of pre-adipocytes, cells were induced to differentiate by adding 1 

µg/mL insulin, 1 μM dexamethasone, 0.5 mM IBMX, and 1 µM rosiglitazone to Primary Media 

for 3 days, then media was supplemented with insulin and rosiglitazone for 3 days. Cells were 

thereafter cultured with Primary Media for 6 more days for full differentiation to occur. 

Isolation of Primary Hepatocytes: Primary hepatocytes were isolated from male Sprague-

Dawley rats (250-300 g), as well as C57BL/6 WT and CHOP-/- mice using the collagenase-

perfusion technique of Bissell and Guzelian (229). Trypan blue exclusion was used to determine 

cell viability (>90%) before plating monolayers on collagen-coated plates (60-mm or 6-wells). 

Cells were cultured in serum-free Williams‟ E medium containing dexamethasone (0.1 µM), 

penicillin (100 units/mL), and thyroxine (1 µM). Media was changed and cells treated 6 hours 

(for rat) and 4 hours (for mouse) after plating. 

In Vitro Studies 

 Nuclear Protein Extraction: For UPR activation analysis in adipocytes, nuclear extract 

was isolated from cells (230). Cells were rinsed with PBS and scraped with 1mL cold PBS, 

pelleted at 100 g x 10 min, and resuspended in Buffer A (10 mM HEPES, 1 mM EDTA), 0.5 

mM DTT, 0.25 mM PMSF, 50 mM NaF, 2 mM NA metavanadate, and 5 mg/mL leupeptin and 

pepstatin). Suspension was homogenized through a needle/syringe then centrifuged at 1000 g for 

10 min and supernatant placed in a separate tube with 0.5 M NaCl and left on ice for 1 h before 

flash frozen. Pellet was washed in 250 mL Buffer A with 250 mM  sucrose and pelleted at 1000g 

for 10 min, resuspended in 100 mL Buffer A with 0.5 M NaCl, and 10 µL of 10% NP-40, left on 

ice for 1 h and centrifuged at 5000 g for 5 min. The nuclear extract was flash frozen. Proteins 

were later resolved on a 10% Bis-Tris gel at 100 V, and transferred at 360 mA.  
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 Western Blot Analysis - Autophagy: For LC3 and p62 analysis, total cell extract was 

obtained by washing cells with cold PBS followed by scraping with RIPA buffer (1% NP-40, 

0.5% sodium deoxycholate, 0.1% SDS, 0.25 mM PMSF, 5 mg/mL Aprotinin, and 1 mM sodium 

orthovanadate). Cells were lysed using an automatic homogenizer at 4ºC for 1 min, and samples 

were left at 4°C for 30 min before spun at 8,000 g for 8 min. Supernatants were stored at -80°C. 

Proteins were later resolved on a 12-15% Bis-Tris gel at 100 V and transferred at 90 mA 

overnight at 4ºC.  

 For both ER stress and autophagy analysis, immunoblots were blocked for one hour at 

room temperature with 5% nonfat milk in Tris-buffered saline (TBS). Membranes were 

incubated with primary antibodies in 2.5% milk-TBS, (5% BSA-TBS with 0.5% Tween-20 for 

LC3B). Secondary antibodies were incubated in 2.5% milk-TBST. Immunoreactive bands were 

detected using horseradish peroxidase-conjugated secondary antibody and chemiluminescence. 

The density of immunoblot was analyzed using Image J or Quantity One (Biorad) computer 

software. 

 RNA Isolation and Real-Time Quantitative RT-PCR: Total cellular RNA was isolated 

from adipocytes after treatment using Qiagen RNeasy MinElute Kit, or hepatocytes using 

Promega RNA Elute Kit. Total RNA (2 μg) was used for first-strand cDNA synthesis using 

High-Capacity cDNA Reverse Transcription Kit. The primers for mRNA levels analyzed are 

shown in Tables 1 and 2. iQ SYBER Green Supermix (Bio-Rad) was used as a fluorescent dye to 

detect the presence of double-stranded DNA. The mRNA values for each gene were normalized 

to internal control β-actin mRNA. The ratio of normalized mean value for each treatment group 

to vehicle control group was calculated.  
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Target mRNA Forward Primer Reverse Primer 

Actin ACCACACCTTCTACAATCAG ACGACCAGAGGCATACAG 

Adiponectin GATGCAGGTCTTCTTGGTC CCCACACTGAACGCTGAG 

ATF-4 CCTAGGTCTCTTAGATGACTATCTGGA

GG 

CCAGGTCATCCATTCGAAACAGAGCA

TCG 

ATG12 AAGATGTCGGAAGATTCAGAG TCCTACAGCCTTCAGCAG 

BECN1 TCTAAGGAGTTGCCGTTATAC CCAGTGTCTTCAATCTTGCC 

C/EBPα GACAAGAACAGCAACGAG GTCAACTCCAGCACCTTC 

C/EBPβ CGACGAGTACAAGATGCG CTGCTCCACCTTCTTCTG 

CHOP GTCCCTGCCTTTCACCTTGG GGTTTTTGATTCTTCCTCTTCG 

CUGBP1 CCTGGCTGGTCTGAACAC CCCTGCTGAACTGGTGAG 

CYP27A1 GACACTGCCGCCTTCATC GCCATTCAGGTATCGCTTCC 

CYP7A1 CAGAAGCATAGACCCAAGTG GTAGCAGAAGGCATACATCC 

FXRα GGACGGGATGAGTGTGAAG ATCTGTGGCTGAACTTGAGG 

HMGCOAR GCCGTCATTCCAGCCAAG CGTTGTAGCCGCCTATGC 

HuR ACACTGAACGGCTTGAGAC ACCCTGGAGTTGATGATTCG 

IL-6 GAGGATACCACTCCCAACAGACC AAGTGCATCATCGTTGTTCATACA 

LPL GTCTAACTGCCACTTCAACC CACCCAACTCTCATACATTCC 

LXRα GCTCTGCTCATTGCCATCAG TGTTGCAGCCTCTCTACTTGGA 

Perilipin ACGAGGAGGAGGAAGAAGAG AGGTCACTGCGGAGATGG 

PPARα ATGGAGACCTTGTGTATGGC GGCAGCAGTGGAAGAATCG 

PPARγ ACTCGCATTCCTTTGACATC TCGCACTTTGGTATTCTTGG 

SREBP-1c CCACTAGAGGTCGGCATGGT TCCCTTGAGGACCTTTGTCATT 

TNF-α GCCTCCCTCTCATCAGTTC ACTTGGTGGTTTGCTACG 

VSP34 CTCTCCTCTCATTACACCAACC CATCAGCAAATCCTCATCATCG 

ULK2 GAGCAGCAGCAGAGCAAG GCCAGCATAACACCACAGG 

XBP-1sp TGAGTCCGCAGCAGGTG GACAGGGTCCAACTTGT 

XBP-1usp CGCAGCACTCAGACTATG TTCCTCCAGACTAGCAGAC 

Table 1. Real-time RT-PCR primers specific for mouse mRNA. Real-time RT-PCR primer 

sequences used for mouse-specific mRNA analysis in this dissertation. Sequences are written 5‟ 

to 3‟. 
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RAT 

Target mRNA Forward Primer Reverse Primer 

Actin TATCGGCAATGAGCGGTTCC AGCACTGTGTTGGCATAGAGG 

ATF-4 GGTTCTCCAGCGACAAGG GGTTTCCAGGTCATCCATTC 

ATG12 CCCAGAAACAGCCATCCC GTCTCCTACAGCCTTCAGC 

BECN1 ACGCTGTTTGGAGATGTTG TTCTGCCACCACCTTTCG 

CHOP GGAGCAGGAGAATGAGAG GACAGACAGGAGGTGATG 

CYP27A1 TGGAGCAAGTGATGAGAC CAAACTATGACGCAGATGG 

CYP7A1 GACACAGAAGCATTGACC GTAACAGAAGGCATACATCC 

HMGCOAR GGACCAACCTTCTACCTCAG ACAACTCACCAGCCATCAC 

SREBP-1 CATCAACAACCAAGACAGTG GAAGCAGGAGAAGAGAAGC 

ULK1 CCAGCAACATCCGAGTCAAG ACATAGGAGAGCCACAGAGC 

VPS34 AACAAGCAGCACACTCTCAG CCAACCAATCCACCTTCACC 

 

HUMAN 

Target mRNA Forward Primer Reverse Primer 

Actin GCGTGACATTAAGGAGAAG GAAGGAAGGCTGGAAGAG 

ATF-4 CAACAACAGCAAGGAGGATG AATTGGGTTCACCGTCTGG 

CHOP CTGAATCTGCACCAAGCATGA AAGGTGGGTAGTGTGGCCC 

SREBP-1 GGTCGTAGATGCGGAGAAG TGATGGAGGAGCGGTAGC 

XBP-1sp GCTGAAGAGGAGGCGGAAG GAAAGGGAGGCTGGTAAGG 

XBP-1usp TCCGCAGCACTCAGACTAC TCCAAGTTGTCCAGAATGCC 

 

 

Table 2. Real-time PCR primers specific to Rat and Human mRNA, respectively. Real-time 

RT-PCR primer sequences used for rat and human-specific mRNA analysis in this dissertation. 

Sequences are written 5‟ to 3‟. 
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 Enzyme-Linked Immunosorbent Assay (ELISA): For analysis of cytokine secretions, 

ELISA method was utilized. Cells were treated with HIV PIs for the noted times, and culture 

media collected. Cells were lysed with total lysis buffer and total protein concentrations of viable 

cells determined using Bio-Rad Protein Assay. 96-well plates were coated with antibody against  

IL-6 or TNF-α for 2-3 h at 37ºC, and then blocked overnight. 100 µL of diluted samples were 

added the next day, followed by addition of Biotin-conjugated anti-antibody. After washing, 

Avidin-HRP was added prior to the substrate. Plates were read at 450 nM after termination of 

enzyme reaction by adding 100 µL 2 N H2SO4. Total amounts of cytokine were normalized to 

total protein of cells and expressed as ng/mg proteins. 

 Analysis of Apoptosis by Annexin V and Propidium Iodine Staining: 3T3-L1s were 

treated with HIV PIs for 24 h, and culture media and trypsinized cells were collected and spun at 

2,000 rpm for 5 min. Cells were stained with Annexin V-FITC and propidium iodine using BD 

ApoAlert Annexin V kit, according to the protocol recommended by the manufacturer. Stained 

cells were analyzed by two-color flow cytometry. Annexin V-FITC and propidium iodide 

emissions were detected in the FL1 and FL3 channels respectively of a Cytomics FC 500 flow 

cytometer (Beckman Coulter, Fullerton, CA). Analysis was stopped at a 20,000 cell count. 

 SGBS cells were plated in 6-well dishes, and treated with HIV PIs for 24 h. Cells were 

stained with Annexin V-FITC and propidium iodine using the same kit and protocol as above. 

Images were immediately acquired using a FITC filter, followed by a TRITC filter on 

fluorescent miscroscope (Olympus, Center Valley, PA) using a 40 × objective lens.  

 Assay of Endoplasmic Reticulum Calcium Pools: Non-differentiated 3T3-L1 cells were 

grown on 22 x 40-mm coverslips and treated for 24 h. Cells were loaded with 4 µM Fura-2 AM 

and ER calcium stores were analyzed by stimulation with 1 μM thapsigargin (TG). Fluorescent 
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images (510-nm emission after alternate 340- and 380-nm excitation) before and after addition of 

TG were collected at 15-ms intervals through a cooled CCD camera. The 340:380 ratios of 20 

individual cells in these images were analyzed using TILLvisION v3.1 imaging software. The 

standard curve generated using a Fura-2 calcium imaging calibration kit to convert Fura-2 

fluorescence measurements into estimates of free Ca
2+ 

concentration (51). 

 Nile Red staining: Cells were plated on 60-mm glass coverslips in 6-well dishes, and at 

confluency, were treated with relevant HIV PIs while concurrently being induced to differentiate. 

After the noted times, cells were fixed in 3.7% paraformaldehyde-PBS for thirty min, rinsed with 

PBS, and stained with working solution of Nile Red (100 ng/mL) for 10 min. Samples were 

washed three times with PBS, 15 min each, and coverslips mounted. Images were obtained with 

a 40× objective using a FITC filter on a fluorescent microscope (Olympus, Center Valley, PA). 

 Oil Red O staining (ORO): Cells were plated on 60-mm glass coverslips in 6-well dishes, 

and at confluency, were treated with relevant HIV PIs while concurrently being induced to 

differentiate. After the noted times, cells were fixed in 3.7% paraformaldehyde-PBS for 30 min, 

rinsed with PBS, and stained with working solution of Oil Red O (5 mM) for 2 h followed by 

three washes of PBS 15 min each. Coverslips were mounted and images obtained using a 40 × 

lens objective of a light microscope (Motic BA200).  

 MATLAB Assessment of lipid droplet: 3T3-L1 cells were plated on 60-mm glass 

coverslips in 6-well dishes, and at confluency, were treated with HIV PIs while concurrently 

being induced to differentiate. After 14 days, cells were fixed in 3.7% paraformaldehyde-PBS for 

30 min, and rinsed in PBS. Cells were mounted and images obtained using a 40 × objective of an 

upright light microscope (Motic BA200). Images were processed using a previously published 
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custom-made MATLAB (MathWorks) code (231), and the lipid droplet number, areas, and %-

area occupied were then determined. 

 PPARγ Promoter Activity: A PPARγ luciferase reporter and firefly luciferase assay 

system (Promega) were used in this experiment. 293 cells were transfected with either pGL3-Luc 

control vector or pGL3 containing a PPARγ responsive element (PPRE) tagged to luciferase 

using Fugene transfection reagent (Roche). Luciferase catalyzes coelenterazine to 

coelenteramide, releasing light, immediately after transcription. Therefore, after treatment with 

HIV PIs for 24 h, cells were lysed in luciferase lysis buffer (containing DTT) obtained from the 

manufacturer. 40 µg of protein was used to measure with 80 µL luciferase assay by a 

luminometer. The GFP fluorescence was detected first, followed by injection of substrate to 

detect luciferase activity. Activity was normalized to GFP from viable cells.  

mRNA Stability: 3T3-L1 cells were treated with vehicle control (DMSO) or HIV PIs for 2 

h before the addition of actinomycin D (5.0 or 10.0 µg/mL) (time 0). Total cellular RNA was 

extracted at 0.25, 0.5, 1, 2, 4, and 6 h after actinomycin D addition. PPARγ mRNA levels were 

determined by real-time RT-PCR as previously described. Results are expressed as the 

percentage of the mRNA at time 0.  

 In Vitro Pulldown: Biotinylated mRNA construction: Primers for both the PPARγ 3‟UTR 

(1564-1769, 205 bp) and CDS (46-1563, 1517 bp) were designed to include a T7 promoter 

sequence as well as restriction enzyme sites. For 3‟UTR, forward primer: 

5‟CCAAGCTTCTAATACGACTCACTATAGGGCTGGATGGAGGAAAGTCCCACC3‟ and 

reverse primer: 5‟AATGTGGTAATTTTTAATATTA3‟. CDS forward primer: 

5‟CCAAGCTTCTAATACGACTCACTATAGGGCTGGATGGGTGAAAACTCTGGG3‟ and 

reverse primer: 5‟AATACAAGTCCTTGTAGATC3‟. 1 µg template was then added to a PCR 
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mixture containing T7 RNA polymerase and biotin-cytidine 5‟-triphophate (CTP). This product 

was purified with DNase, a G-50 column, and RNA precipitation.  

Analysis of RNA binding proteins bound to biotinylated RNA were done as previously 

described (232). Briefly, 120 µg of total cell lysate protein from 3T3-L1 cells treated for 24 h 

with HIV PIs was added to paramagnetic streptavidin-conjugated Dynabeads M-280 (Dynal, 

Oslo, Norway). 0.6 µg biotinylated PPARγ 3‟UTR or CDS were incubated for 30 min at RT, 

after which beads were washed to remove non-specific binding. The mixture was subsequently 

boiled and protein separated on a 10-12% Tris-HCl SDS PAGE gel. The membranes were 

blotted with antibodies against HuR, CUGBP-1 and Actin for loading control. 

 RNA Immunoprecipitation: To assess the association of endogenous HuR and CUGBP1 

with endogenous PPARγ mRNA, immunopreicipitation (IP) of RNA binding protein complexes 

was performed. 3T3-L1 cells were treated with HIV PIs or DMSO control for 24 h, and then 

harvested in PBS with rubber policemen. Cells were pelleted, and resuspended in approximately 

two cell pellet volumes of polysome lysis buffer (PLB: 100 mM KCl, 5 mM MgCl2, 10 mM 

HEPES, 0.5% Nondiet P-40 with 1 mM DTT, 100 U/ml RNaseOUT, 0.2% 

vanadylribonucleoside complex, 0.2 M PMSF, 1g/ml pepstatin A, 5 g/mL bestatin, and 20 g/mL 

leupeptin). Protein G-Sepharose beads were swollen 1:1 (v/v) in NT2 buffer (see above) 

supplemented with 5% BSA. 5 mg cellular 3T3-L1 proteins were added to 100 µL aliquot of 

preswollen protein A bead slurry and incubated for 4 h at RT in the presence of excess (30 µg) 

antibody (IgG1, anti-HuR, or anti-CUGBP-1).  Proteins were digested via Proteinase K (0.5 

mg/mL) at 55ºC for 20 min, and bead-free supernatants were extracted with 

phenol:chloroform:isoamylalcohol. RNA was precipitated with 1/10
th

 volume 3 M NaAc (pH 

5.2), 150 µg/mL glycogen, and 2.5 volumes of 100% ethanol. The precipitates were dissolved in 
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15 µL nuclease-free water. RNA in IP materials was reverse transcribed and used to detect 

presence of PPARγ mRNA by real-time RT PCR.  

 Effect of CUGBP1 and HuR overexpression on 3’UTR PPARγ: The 3‟UTR of PPARγ 

was cloned into pEGFP-C3 expression vector. 293 cells were stably transfected with pEGFP-C3-

mPPARγ-3‟UTR. CUGBP1 was cloned into pcDNA3.1 vector and HuR into pcDNA3-TAP. 293 

stable cells of GFP-PPARγ-3‟UTR were transfected with either pcDNA3-CUGBP1 or pcDNA3-

HuR-TAP using FuGENE HD (Roche) for 48 h according to the manufacture‟s protocol. GFP 

protein expression was than determined by Western blot analysis. 

 Monodansylcadaverine (MDC) Stain: Cells were plated in 6-well dishes with coverslips, 

and treated with HIV PIs or vehicle control for 24 or 48 h. Cells were then stained with 25 µM 

MDC (Sigma) in PBS for 10 min at 37°C, followed by fixation in 3.7% paraformaldehyde-PBS 

for 15 min. Cells were washed and mounted in the dark with antifade mounting media. Images 

were obtained with both 40 and 60 × objective lenses with a DAPI filter on a fluorescent 

microscope (Olympus, Center Valley, PA). 

 Transmission Electron Microscopy (TEM): 3T3-L1, HepG2, and RPH cells were plated 

on Permanox Quantity dishes (Nalgene Nunc International, Rochester NY), and treated with HIV 

PIs for 24 or 48 h. Cells were rinsed with PBS and fixed with 2% glutaraldehyde for 1 h, rinsed 

in 0.1 M cacodylate buffer, and fixed for another hour with 1% osmium tetroxide in 0.1M 

cacodylate buffer. Samples were further washed, dehydrated with gradient ethanol and infiltrated 

with a 50/50 mixture of 100% ethanol/PolyBed 812 resin for overnight, and further infiltrated 

with pure PolyBed. Samples were embedded using fresh PolyBed 812 and polymerized in a 60ºC 

oven for 2 days. Samples were sectioned with a Leica EM UC6i Ultramicrotome (Leica 

Microsystems) and stained with 5% uranyl acetate and Reynold‟s Lead Citrate, followed by 
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scoping using a JEOL JEM-1230 TEM (JEOL USA) with a Gatan Ultrascan 4000 digital camera 

(Gatan Inc, Pleasanton CA). 

 Construction of GFP-tagged LC3B Stable Cell Line: A pEGFP-C3 vector containing 

LC3B was a kind gift from Dr. Sarah Spiegel (Virginia Commonwealth University). 2 x 10
6
 

Cells were transfected with 2 µg of plasmid with 5 µL FuGENE HD for 24 h according to the 

manufacture‟s protocol. Stable clones were selected with 60 µg of G418. 

 Retroviral – GFP-LC3: GFP-LC3BI under SV promoter in the retroviral vector pBABE 

was purchased from AddGene. Plasmid was replicated in E. coli α-competent cells and purified 

with a ZR plasmid mini prep (Zymo research), and DNA eluted with 0.1 TE (pH 8.0). Retroviral 

particles were constructed in 293-FT cells by cotransfection with 1 µg pBab3-puro-GFP-LC3BI 

(or control vector), 0.1 µg pCMV-VSV-G, and 0.9 µg pMDLg/pREE using CaCl2 and HEPES 

mixture. Infectious particles were harvested from culture supernatants 72 h after transfection and 

media was passaged through a 0.45 µM filter. Particles were purified by adding PEG 6000 

(8.5%) with 0.4 M NaCl O/N at 4ºC, rotating. Samples were centrifuged at 4800 rpm for 30 min, 

and viral particles resuspended in sterile PBS at 1:100 of original volume of media. 

3T3-L1 cells were infected with GFP-LC3 retrovirus at a 1:50 PFU in the presence of 8 

µg/µL of polybrene for 48 h. Stably infected cells were selected with puromycin (5 ng/mL).  

 Lentiviral - ATF-4 shRNA:   Small hairpin RNA (shRNA) specifically targeting mouse 

ATF-4 in a lentiviral vector, TRC1-pLKO.1-puro vector, was purchased from Sigma. Sequence 

of ATF-4 shRNA used was target to the coding region: 

5‟CGGACAAAGATACCTTCGAGTCT3‟. Plasmid was replicated in E. coli α-competent cells 

and purified with a large-scale purification of DNA by cesium chloride gradient. Briefly, 1 liter 

of transformed bacterial cells were pelleted and resuspended inTris-EDTA with 25% (w/v) 



www.manaraa.com

60 

 

sucrose. Cells were lysed in the presence of lysozyme, EDTA, and RNase, followed by Triton-X. 

Supernatant was collected after spinning at 25,000 rpm for 2 h, and cesium chloride added. After 

addition of ethidium bromide, samples were spun at 4,000 rpm for 15 min to remove protein, and 

then spun for 18-20 h at 45,000 rpm. The lowest band identified as DNA was collected, and 

ethidium bromide removed with water saturated butanol. Sample was dialysized O/N in 

deionized water containing 0.01 M Tris-HCl, 0.001 M EDTA, and 0.03 M NaAc. Plasmid was 

purified with phenol/chloroform extraction followed by ethanol precipitation. Plasmid was 

resuspended in Tris-Hcl/EDTA (TE pH 8.0).  

 Lentiviral particles were constructed in 293-FT cells. Cells were transfected with 3 µg 

pCMV-VSV-G, 2 µg pCMV-RSV-Rev, 5 µg pMDLg/pREE, and 10 µg pLKO1-ATF4shRNA or 

plasmid or control scramble using CaCl2 and HEPES mixture. Infectious lentivirus was 

harvested from culture supernatants 24, 48, and 72 h after transfection. Particles were purified as 

described above. 3T3-L1 cells were infected with lentivirus in the presence of 8 µg/µL of 

polybrene at a 1:50 PFU for 48 h. Successfully infected cells were selected with puromycin (5 

ng/mL). Silencing was confirmed by Western blot analysis and real-time RT-PCR.  

 Lentiviral - CHOP shRNA: CHOP small hairpin (sh)RNA was designed through siRNA 

Target Finder (Ambion). The sequences of 3 CHOP shRNAs were as follows: shRNA1 is 5‟-

CTGGAAGCCTGGTATGAGGA-3‟, shRNA2 is 5‟-GGAAACGGAAACAGAGTGGTC-3‟, 

and shRNA3 is 5‟-GCAGGAAATCGAGCGCCTGAC-3‟, with shRNA1 used in the majority of 

experiments shown here and elsewhere (53). shRNA was placed in pLentiLox, and plasmids 

purified the same as above. The recombinant lentiviral particles were produced following the 

same protocol as above for ATF-4 shRNA. 3T3-L1 cells were infected in the presence of 8 

µg/µL of polybrene lentivirus at a 1:50 PFU for 48 h. Successfully infected cells were selected 
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with neomycin (30 µg/mL). Silencing was confirmed by Western blot analysis and real-time RT-

PCR.  

 Lentiviral - CHOP overexpression: For overexpression of CHOP, the mouse cDNA of 

CHOP was subcloned into pLVX-AcGFP-N1 (Clonetech) from BamHI and EcoRI sites and N-

terminus of CHOP was fused with GFP. Lentiviral particles were packaged and tittered as 

previously described (232). 3T3-L1 cells were incubated with lentivirus at a multiplicity of 

infection of 50 for 48 hours in the presence of polybrene (8 µg/mL). Cells were selected with 

puromycin (5 ng/mL). Efficiency was confirmed by real-time RT-PCR and Western blot 

analysis. 

In Vivo Studies 

 Mouse Care and Treatments: C57BL/6 male mice were purchased from Jackson 

Laboratories. CHOP knockout mice, with a C57BL/6 background were previously acquired by 

our laboratory. All mice were housed under identical conditions and given free access to water 

and food. The VCU Animal Care Facility complies with all Federal and State laws regarding the 

use and care of experimental animals, and with Public Health Service Policy on Humane Care 

and Use of Laboratory Animals (NIH Guide for Grants and Contracts, Vol. 14, No. 8, June 255, 

1985). The American Association currently accredits the facilities and care program for 

Accreditation of Laboratory Animal Care (AAALAC - #00036). It is also USDA inspected (#52-

R-0007) and Animal Welfare Assurance #A3281-001.  

Animals were kept under full-time veterinary supervision. Mice were weaned at 4 weeks 

of age and fed ad libitum a standard mouse chow diet. At 8 weeks of age, mice were divided into 

control and HIV PI treated groups, and gavaged for 8 weeks. All mice were fed on a high fat diet 

(HFD) during treatments to both mimic a typical patient on HIV PI treatment, and obtain more 
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adipose at time of sacrifice. Mice were observed daily for signs of distress, injury, and illness, 

and if had such signs, were immediately euthanized. At the end of the time point, mice were 

euthanized by anesthesia before harvesting any tissue, which is consistent with the 

recommendations by the Panel on Euthanasia of the American Veterinary Medical Association. 

 Western Blot Analysis: For analysis of protein expression, adipose or liver tissue was 

lysed (100 mg) in total lysis buffer (TLB; 1 mL) (20 mM Tris-HCl, 1% NondietP-40, 150 mM 

NaCl, 2 mM EDTA, 0.10% SDS, 20 mM NaF, 1 mM NaVO4, and 2x protease and phosphatase 

inhibitor (Sigma)) via homogenization immediately after obtaining from -80ºC storage. Samples 

were centrifuged at 6,000 rpm for 6 min and the lipid layer removed. Cells were spun again, and 

supernatants aliquoted in 100 µL in -80ºC. For protein concentration measurement, samples were 

diluted 1:10 in TLB and measured using BioRad Protein Assay. 100 µg of protein was boiled 

and separated on 10% SDS-PAGE gel for UPR activation analysis, or 12% SDS-PAGE gel for 

autophagy activation analysis. Immunoblots were treated the same as for in vitro analysis.  

 RNA Isolation and Real-Time Quantitative PCR: For analysis of mRNA levels, adipose 

or liver tissue was lysed (100 mg) in Qiazol Tryzol Reagent (1 mL) (Qiagen) via homogenization 

immediately after obtaining from -80ºC storage. 200 µL of chloroform was added to each 

sample, vigorously shaken, and centrifuged 15 min at 12,000 rpm. Supernatant was placed in 

new tubes, and 2.5x 100% ethanol, 0.3 M NaAc, and 150 µg/mL glycogen added. Samples were 

placed O/N at -20ºC. The next day, samples were spun for 15 min at 12,000 rpm and pellets 

washed with 70% ethanol. Pellets were dried and resuspended in 15 µL nuclease-free water. 

Samples were reverse transcribed and analyzed by real-time RT-PCR (as in in vitro).   

 Immunohistochemistry of Adipose Tissue: Adipose tissue was fixed in 10% neutral 

buffered formalin immediately after isolation from animals. Samples were washed in PBS and 
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transferred to 70% ethanol. Formalin-fixed tissues were then embedded in paraffin, and 

sectioned at 5 µM. Paraffin on slides was heated in an oven at 45ºC for one h, and deparaffinized 

by running a xylene-drenched q-tip over slices. Slides were immersed in 0.3% v/v 

H2O2/methanol for 10 min and washed in deionized water. Samples were blocked by first 

washing in 50 mM PBS-0.02% Tween 20 and processed with a Vectastain Elite ABC Kit 

(Vector Laboratories). Briefly, tissue was covered in blocking solution (10% serum) for 20 min, 

blotted, and incubated for 1 h with primary antibody (anti Mac-2, Cederlane Laboratories). 

Samples were washed, and then incubated for 30 min with diluted biotinylated secondary 

antibody (anti-Rat). After washing, samples were incubated for 30 min with ABC reagent, 

washed for 5 min, and DAB (3, 3‟-diaminobenzidine) substrate added for 2 min. Samples were 

counterstained in hematoxylin for 20 s, dehydrated through increasing concentrations of ethanol 

to xylene and coversliped with Permount. Images were obtained using a Motic BA200 

microscope (Motic Instruments, Inc, Baltimore, MD). 

Statistical analysis 

Student‟s t test was employed to analyze the differences between sets of data. Statistics were 

performed using Prism 5 (GraphPad, San Diego, CA). All numerical results are represented as 

mean ± standard error (SE) from at least three separate experimental data sets.  

 

 

 

 



www.manaraa.com

64 

 

CHAPTER III:  HIV Protease Inhibitors Dysregulate Adipogenesis through Endoplasmic 

Reticulum Stress Activation and Alteration of PPARγ mRNA Stability 

STUDY RATIONALE 

Our laboratory has a long standing interest in the metabolic side effects of HIV protease 

inhibitors (PIs). Although the inclusion of HIV PIs in patient treatment has had a profund impact 

in the clinical history of HIV, PIs are linked to deleterious effects including early induction of 

insulin resistance, dysregulation of lipid metabolism, and inflammation, all of which are 

cornerstones of cardiovascular disease (15, 22, 31).  

 During the last decade, an extensive effort has been put forth to study the mechanism 

underlying HIV PI-induced side effects. Both in vitro and in vivo animal studies from our 

laboratory and others have linked HIV PIs with the activation of endoplasmic reticulum (ER) 

stress, oxidative stress, induction of apoptosis, and inflammatory cytokine production in several 

metabolically important cell types (51-53, 233-235). One tissue of particular interest is adipose 

tissue (AT) as pathology in AT can be central in the inflammatory state, insulin resistance, 

dyslipidemia and altered body morphology (134, 236-238). However, HIV PI-induced pathology 

in AT is not well understood. Investigators have focused on the ability of HIV PIs to 

differentially alter adipocyte maturation, but results have been contradictory, confusing, and lack 

elucidation of underlying mechanisms (21, 192, 193, 239-245).  

Activation of ER stress induces the unfolded protein response (UPR), extensively shown 

to alter cellular lipid metabolism when upregulated (58, 80, 246-248). ER stress can also lead to 

the cellular inflammatory response (83, 95) and even apoptosis (88, 89). Therefore, strong 

activation of this pathway can result in multiple cellular aberrations, leading to detrimental 

effects in metabolically active tissue such as AT. 
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In this study, we attempt to elucidate the underlying mechanism of HIV PI-induced lipid 

metabolism dysregulation in adipocytes. Here, we demonstrate multiple deleterious effects of 

HIV PIs in adipocytes such as alteration of differentiation, induction of inflammation, and cell 

death, all of which may be linked to HIV PI-induced ER stress. We also show how HIV PIs alter 

gene regulation during adipogenesis, further explaining the phenomenon of HIV PI-induced 

adipocyte lipid metabolism dysfunction. 
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RESULTS 

HIV PIs activate the UPR in murine and human adipocytes, in a time and dose-dependent 

manner 

 HIV PIs ritonavir (RITV) and lopinavir (LOPV) have been reported in separate studies to 

induce ER stress and to disrupt lipogenesis in adipocytes (54, 241). Our previous studies have 

shown that activation of ER stress plays a critical role in HIV PI-induced dysregulation of lipid 

metabolism in macrophages and hepatocytes (49, 51). In order to determine whether HIV PIs 

have similar effects on the UPR activation in adipocytes as they do in other cell types, mouse 

3T3-L1 pre- and mature adipocytes were treated with seven available HIV PIs for various time 

periods (1-24 h) and the protein levels of the UPR-specific genes, CHOP, ATF-4, and XBP-1, 

were detected by Western blot analysis. We found only some HIV PIs induced UPR activation in 

mature adipocytes, and had less effect on pre-adipocytes. LOPV, RITV, saquinavir (SQV), and 

indinavir (IDV) induced significant activation of the UPR, while amprenavir (AMPV), darunavir 

(DRV) and tipranavir (TPV) only had modest or no activation. We therefore split these HIV PIs 

into two groups: ER stress inducers and non-inducers. Interestingly, those in the non-inducer 

group have much lower incidences of inducing dyslipidemia in patients compared to those in the 

inducer group (249, 250). 

Based on the most updated January 2011 guidelines of US Department of Health and 

Human Services for Use of Antiretrovial Agents in HIV-1-infected Adults and Adolescents, HIV 

PIs are still listed as key components of preferred HAART regimens and will continue to be 

important drugs for the foreseeable future. With the ability to maintain viral load suppression 

superior to some other HIV PIs, LOPV coformulated with RITV (4/1) has remained a frequently 

used treatment in the clinic. As LOPV/RITV is also in the ER stress inducer group and is known 
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to induce metabolic side effects in the clinic, we focused on this combination during the 

subsequent studies. 

Shown in Figure 8, we found UPR activation by these HIV PIs peak between 4 and 7 h. 

To determine if this activation was specific (i.e. dose-dependent), we treated 3T3-L1s with 

increasing doses of HIV PIs at 6 h, and found LOPV and LOPV/RITV dose-dependently 

increased CHOP and ATF-4 expression in differentiated adipocytes (Figure 10A,B), but had no 

significant effect on XBP-1 protein expression (data not shown). In human SGBS adipocytes, 

both RITV and LOPV increased CHOP and ATF-4 expression in a similar manner (Figure 10C). 

3T3-L1 pre-adipocytes had comparatively less activation of the UPR than mature adipocytes 

(Figure 9). In addition, RITV was the more significant activator of the UPR in pre-adipocytes, 

compared to LOPV‟s higher activity in mature adipocytes. These differences may be attributable 

to the variation of cell type physiology.  

To ascertain if HIV PI-induced increase of UPR transcriptional factors also occurs at the 

transcriptional level, we treated both pre- and differentiated 3T3-L1s 1-24 h and obtained total 

RNA. mRNA levels of UPR essential genes were determined by real-time RT-PCR. We found a 

peak increase of mRNA levels at 4 h. As shown in Figure 11, 3T3-L1 and SGBS cells treated 

with HIV PIs for 4 h demonstrated a dose-dependent increase of CHOP and ATF-4. 

Interestingly, LOPV tended to be a more significant activator of the UPR in this assay as well. 

To determine if this phenomenon was specific to cell culture, we treated C57BL/6 4 

week-old male mice fed a high fat diet with LOPV/RITV 4:1 (38mg/kg) or control solution for 2 

months. Mice were sacrificed, and the gonadal fat pad analyzed for UPR protein and mRNA 

levels. In Figure 12, we demonstrate HIV PI LOPV/RITV increased both protein and mRNA 

levels of UPR ATF-4, CHOP, and spliced XBP-1 in vivo. 
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Figure 8. HIV PIs time-dependently activate the UPR in differentiated 3T3-L1s. 

Differentiated 3T3-L1s were treated with AMPV, RITV, LOPV, or LOPV/RITV (12.5 μM) for 

1-24 h. Representative immunoblots from four separate experiments against CHOP, ATF-4, and 

Lamin B of nuclear extracts. 
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Figure 9. HIV PIs dose-dependently activate the UPR in non-differentiated 3T3-L1s. Non-

differentiated 3T3-L1s were treated with increasing concentrations of RITV, LOPV, or 

LOPV/RITV. A) Representative immunoblots against CHOP, ATF-4, and Lamin B from nuclear 

extracts of cells treated 6 h. B) Density of immunoblots were determined by Image J. Relative 

protein levels were normalized using Lamin B as loading control. C) Relative mRNA levels of 

CHOP and ATF-4 of cells treated for 4 h and analyzed by real-time RT-PCR. β-Actin was used 

as an internal control. B,C) Values are means ± SE of four independent experiments. *p<0.05, 

**p<0.005 
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Figure 10. HIV PIs activate the UPR in differentiated murine and human adipocytes.  

Differentiated 3T3-L1s (A, B) and SGBS (C) were treated for 6 h with increasing concentrations 

of RITV, LOPV, and LOPV/RITV. Representative immunoblots against CHOP, ATF-4, and 

Lamin B from nuclear extracts are shown. B) Density of immunoreactive bands were determined 

by Image J with Lamin B as loading control. Values are mean ± SE of three independent 

experiments; *p<0.05.  
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Figure 11. HIV PIs induce transcriptional increase of UPR genes in adipocytes. 

transcriptional level of UPR genes in adipocytes. Differentiated 3T3-L1s (A) and SGBS (B) 

were treated with increasing doses of RITV, LOPV, or LOPV/RITV for 4 h. mRNA levels were 

analyzed by real-time RT-PCR with β-Actin internal control. Values are mean ± SE of three 

independent experiments; *p<0.05, **p<0.005. 
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Figure 12. LOPV/RITV induces ER stress in vivo. C57BL/6 male mice were gavaged with 4:1 

LOPV/RITV or control solution for eight weeks. At time of sacrifice, gonadal fat pads were 

obtained and analyzed for protein (A) and mRNA levels (B). Values are mean ± SE from two 

independent experiments; n=5 normal chow (NL Diet), n=6 high fat diet (HFD) and 

LOPV/RITV. 
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Effect of HIV PIs on ER calcium stores in adipocytes 

 ER stress can be activated by a number of insults, one of which is depletion of ER 

calcium stores leading to altered cellular calcium homeostasis. Thapsigargin (TG), a 

sarcoplasmic/ER calcium ATPase inhibitor, depletes the ER calcium stores and activates the 

UPR in many different cells (251, 252). We have previously shown RITV depletes ER calcium 

in macrophages leading to UPR activation (51). We further examined the effect of LOPV and 

RITV (12.5 μM) on ER calcium stores in adipocytes by treating 3T3-L1s for 24 h. The ER 

calcium content was determined using the fluorescent calcium indicator fura-2/AM as described 

previously (51). As shown in Figure 13, both RITV- and LOPV-treated cells markedly reduced 

the response to TG compared to DMSO control, indicating that ER calcium stores were depleted.   

 

HIV PIs induce cell death in adipocytes 

 We have previously shown that HIV PI-induced ER stress is correlated to the induction 

of cell apoptosis in both macrophages and hepatocytes at clinically relevant concentrations (49, 

52). We further examined whether HIV PIs would have a similar affect in adipocytes, which 

could potentially account for dysregulation of lipid metabolism in patients. Non-differentiated 

and differentiated 3T3-L1s were treated with different concentrations of HIV PIs, vehicle control 

DMSO, or positive control thapsigargin (TG) for 24 h. Cells were collected, stained with annexin 

V-FITC and propidium iodide, and analyzed by flow cytometry. As shown in Figure 14, both 

LOPV and RITV increased cell death dose-dependently in differentiated 3T3-L1s. As similar to 

our other assays, non-differentiated 3T3-L1s did not have as significant an increase of HIV PI-

induced cell death, but the trend remained the same (data not shown). In addition, differentiated 

SGBS cells demonstrated a much similar phenomenon as murine adipocytes (Figure 15). 
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Figure 13. HIV PIs deplete ER calcium stores in 3T3-L1s.  Non-differentiated 3T3-L1s were 

treated with RITV or LOPV (12.5 μM) or DMSO control for 24 h. ER calcium stores were 

assessed by Fura-2 AM fluorescence ratio of 340:380 nm in individual cells before and after 

addition of thapsigargin 100 nM. Representative tracing for a summation of at least 15 cells is 

shown, out of two independent experiments. 
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Figure 14. HIV PIs induce cell death in differentiated 3T3-L1s.  Differentiated 3T3-L1s were 

treated with increasing concentration of HIV PIs, vehicle control (DMSO) for 24 h, then stained 

with Annexin V-FITC and propidium iodide. The percentages of apoptotic and necrotic cells 

were analyzed by flow cytometry. A) Represenative plots. B, C) Relative amount of apoptotic 

and necrotic cells. Values are mean ± SE for four independent experiments. Statistical 

signficiance relative to vehicle control (0): *p<0.05. 
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Figure 15. HIV PIs induce cell death in SGBS cells.  Non-differentiated SGBS cells were 

treated with 25 µM HIV PIs, DMSO control, or positive control thapsigargin (TG) for 24 h. Cells 

were stained with Annexin V-FITC and propidium idodide, and images obtained using a 

fluorescent microscope with a 40 × objective.  



www.manaraa.com

77 

 

HIV PIs activate the inflammatory cascade in adipocytes 

 Inflammation is a major cornerstone of metabolic diseases, as well as atherosclerosis. It is 

well demonstrated that inflammation in AT is an underlying issue in diabetes mellitus (196, 199). 

We have previously demonstrated that HIV PIs activate the inflammatory cascade, as well as 

stabilize mRNA transcripts of IL-6 and TNF-α in macrophages (232). To determine if this was 

also true in adipocytes, we treated murine 3T3-L1s with HIV PIs for 12, 24, and 48 h, and 

analyzed culture media by ELISA. At 48 h, there was an increase of IL-6 secretion from these 

cells. This was found to be a dose-dependent occurrence in mature adipocytes, while pre-

adipocytes did not demonstrate this phenomenon (Figure 16).  

In addition to pro-inflammatory cytokine secretion, crown structure formation is another 

hallmark of inflamed AT. Resident macrophages are activated by over expanded and stressed 

adipocytes (253-255), and call in circulating macrophages. Activated macrophages than attempt 

to engulf dying or stressed cells, and can be visualized in tissue stained with anti-macrophage 

antibodies. We wanted to determine if HIV PIs can induce this inflammatory response in our 

animal model. Therefore, gonadal AT of C57BL/6 mice treated with LOPV/RITV for 8 weeks 

was fixed, dehydrated and placed in paraffin. 0.5 μM slices were stained for presence of 

macrophages, and counterstained for nuclei visualization. As seen in Figure 17, there was only a 

slight difference found between control and mice treated with HIV PIs. This is most likely due to 

the already stressed tissue from mice being fed a high fat diet for a long period, as this diet has 

already been shown to induce crown structure in AT (256). However, it was promising to find 

the slight increase of crown-like structures in LOPV/RITV treated mice, supporting the 

hypothesis that HIV PIs increase AT inflammation. 
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Figure 16. HIV PIs increase inflammatory cytokines in differentiated 3T3-L1s. A) Non-

differentiated and B) differentiated 3T3-L1s were treated with increasing concentrations of 

RITV, LOPV, or LOPV/RITV for 48 h. Culture media analyzed by ELISA. Relative IL-6 levels 

were determined with total cellular protein as control. Values are mean ± SE from three 

independent experiments. Statistical significance relative to DMSO control (0); *p<0.05, 

**p<0.005. 
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Figure 17. LOPV/RITV slightly increases inflammation in vivo. C57BL/6 male mice were fed 

a high fat diet and gavaged with 4:1 LOPV/RITV or control solution for 8 weeks. Gonadal fat 

pads were fixed, stained with anti-Mac2, and counterstained for nuclei. Images were acquired 

using a light microscope with 20 × and 40 × objective lenses. 
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Effects of HIV PIs on intracellular lipid accumulation in adipocytes 

 Previous studies have shown that HIV PIs can affect adipocyte differentiation, but with 

contradictory results (242, 257, 258). To specifically determine the effect of individual HIV PIs 

on adipocytes differentiation, we first monitored the effect of HIV PIs on intracellular lipid 

droplet formation using Nile Red, a fluorescent dye that specifically stains lipid droplets (259). 

As shown in Figure 18A, when murine pre-adipocytes were induced to differentiate while 

concurrently treated, HIV PIs differentially affected intracellular lipid accumulation. 

Specifically, RITV increased lipid accumulation compared to control, while LOPV and 

LOPV/RITV inhibited lipid accumulation. We further verified our observations using another 

common neutral lipid stain, Oil Red O in 3T3-L1 cells (Figure 18B). Similar results were 

obtained with human SGBS cells stained with Oil Red O (Figure 18C). To increase accuracy and 

avoid subjectivity, we also quantitated both the number and size of lipid droplets that 

accumulated in 3T3-L1 cells when induced to differentiate in presence of HIV PIs using a 

MATLAB program previously written and published (231) (Figure 19). These combined 

findings enabled us to more definitively ascertain the effect of HIV PIs on adipocyte 

differentiation compared to what was previously published in the literature, as well as determine 

the extent of effect at the LD level.  

 

HIV PIs alter PPARγ at the transcriptional and posttranscriptional levels 

 To ascertain the mechanism underlying LOPV-inhibition of differentiation and RITV- 

induction of differentiation, we first analyzed the activity of the PPARγ promoter in the presence 

of HIV PI treatment. As discussed previously, PPARγ is an essential transcription factor 

involved in adipogenesis. Although we expected LOPV to inhibit PPARγ, and RITV to either 
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have no affect or induce the promoter leading to more lipid accumulation, we found all HIV PIs 

to significantly inhibit promoter activity (Figure 20). We further analyzed PPARγ mRNA levels. 

In non-differentiated cells, mRNA levels could not be accurately assessed as PPARγ is not yet 

upregulated at this stage. In differentiated 3T3-L1s, we found significant decreases of PPARγ 

mRNA at 4 h, with complete rebound by 6 h of treatment (Figure 21A). However, RITV induced 

an increase of mRNA stability compared to DMSO control (Figure 21B).  

In attempt to elucidate how RITV inhibits PPARγ promoter activity but increases mRNA 

stability, we investigated the role of RNA binding proteins in 3T3-L1s treated with LOPV and 

RITV. We have previously shown that HIV PIs can increase the stabilizing mRNA binding 

protein HuR in macrophages, leading to increased translation of IL-6 (191, 232), and 

hypothesized that LOPV/RITV may have a similar role in PPARγ stabilization.  

We therefore completed a pulldown assay in which 3T3-L1s were treated for 24 h with 

either RITV or LOPV (12.5 µM) or DMSO control. 5 mg of total cell lysate was incubated with 

biotinylated beads previously incubated with anti-HuR or anti-CUGBP1 antibody. Protein was 

digested and RNA precipitated. Bound mRNA was analyzed by real-time RT-PCR, using IgG1-

incubated bead samples as a control.  As shown in Figure 22, RITV and not LOPV significantly 

increased mRNA binding proteins to associate with PPARγ. In order to clarify this was a specific 

binding, we completed an in vitro binding assay. Supportive of the putative binding sites found 

in mRNA PPARγ sequence (Figure 23A), we found significant HuR and minimal CUGBP-1 to 

bind to the 3'UTR, and only HuR binding minimally to the CDS (Figure 24B).  

In addition, when 293 cells were transfected with plasmid containing the 3‟UTR of 

PPARγ in a GFP-expression vector, overexpression of either HuR or CUGBP-1 increased GFP  
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Figure 18. HIV PIs differentially affect adipocyte maturation. 3T3-L1 cells were induced to 

differentiate while concurrently treated with HIV PI. Cells were fixed after 8 days and stained 

with A) Nile Red and images acquired on a fluorescent microscope or B) Oil Red O (40 ×). C) 

SGBS cells were treated in the same manner as 3T3-L1s and stained with Oil Red O after 10 

days (40 ×). Images are representative of three individual experiments. 
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Figure 19. HIV PIs differentially affect LD number and size in differentiating 3T3-L1s. 

3T3-L1s were induced to differentiate in the presence of increasing concentrations of HIV PIs. 

After 2 weeks, cells were fixed and imaged using a 40 × objective on a light microscope. Images 

were analyzed via MATLAB for both lipid droplet (LD) number and diameter. Values are mean 

± SE of three independent experiments; *p<0.05, **p<0.005. 
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Figure 20. HIV PIs inhibit activity of the PPARγ promoter.  293 cells were transfected with a 

plasmid with the PPARγ promoter controlling luciferase expression for 48 h. Cells were 

subsequently treated with increasing concentrations of HIV PIs or control DMSO for 6 h. 

Relative luciferase activity was analyzed with total protein levels as control. Values were 

subtracted from treated 293 cells transfected with empty plasmid. Values are mean ± SE of ten 

independent experiments. *p<0.05, **p<0.001 compared to DMSO (0). 
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Figure 21. HIV PIs differentially alter PPARγ mRNA levels. A) Differentiated 3T3-L1s were 

treated with increasing concentrations of HIV PIs for 4 or 6 h. Relative mRNA levels were 

determined by real-time RT-PCR with β-Actin as internal control. Values are mean ± SE from 

four independent experiments: **p<0.005 compared to DMSO (0) control. B) 3T3-L1s were 

treated with 12.5 µM RITV or LOPV for 2 h, followed by the addition of ActinomycinD (10 µg) 

(time 0). Total RNA was isolated from cells at 0.5, 1, 2, 4, and 6 h, and PPARγ mRNA levels 

analyzed as above. Results are expressed as the percentage of the mRNA at time 0 using a two 

phase exponential decay analysis of n =2. 
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Figure 22. In vivo pulldown of PPARγ mRNA after treatment with HIV PIs in 3T3-L1 cells. 

3T3-L1 cells were treated with RITV 12.5 µM, LOPV 12.5 µM, or DMSO control for 24 h. 3 mg 

protein equivalent was added to preswollen and antibody labeled Sepharose beads, and rotated at 

RT for 4 h. RNA in IP materials was reverse transcribed to detect the presence of PPARγ 

mRNA. Values are mean ± SE from four independent experiments: *p<0.05, **p<0.001. 
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Figure 23. HuR and CUGBP-1 bind to PPARγ. A) Putative binding cites of HuR (Blue) and 

CUGBP1 (Pink) in the mRNA sequence of PPARγ. B) Biotinylated mRNA of the 3‟UTR and 

CDS of PPARγ were incubated with total 3T3-L1 protein lysates. mRNA-protein complex was 

pulled down with Streptavidin Dynabeads. Shown are representative immunoblots of four 

independent experiments against HuR and CUGBP-1 of IP material. The 3‟UTR of IL-6 and 

TNF-α are shown as positive control (results previously published (191, 232)). 
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Figure 24. 3’UTR PPARγ activity is increased with HuR and CUGBP-1 overexpression. 

293 cells were co-transfected with the 3‟UTR region of PPARγ inserted in a GFP-expressing 

vector with either (A) HuR or (B) CUGBP-1 under constitutive CMV control. Vectors with no 

insert were used as control. After 48 h, activity of 3‟UTR was determined with total cell lysates. 

Shown are representative immunoblots against GFP and Actin from three independent 

experiments. Last lane is no transfection control. 
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Figure 25. RITV increases HuR and CUGBP-1 translocation in 3T3-L1s. 3T3-L1 cells were 

treated with RITV (15 µM) or purified lipopolysaccharide (LPS – total 1 µg) for 24 h. Cells were 

fixed and stained with anti-HuR or -CUGBP-1, and images acquired using a confocal 

microscope with a 60 × oil immersion lens. Shown are representative images from two 

independent experiments. 
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expression compared to empty GFP plasmid (Figure 24). We also have preliminary data that 

RITV treatment of 3T3-L1s increases translocation of HuR and CUGBP-1, indicating activation 

of protein (Figure 25). Taken together, these results indicate RITV increases HuR and CUGBP-1 

activation and binding to PPARγ mRNA, which has the ability to then increase stability. This 

can ultimately lead to an increased in LD formations during adipogenesis.  

 

Effect of CHOP on HIV PI-induced alterations of intracellular lipid accumulation in 

adipocytes 

 The differential affects of RITV and LOPV on PPARγ mRNA stability needs to be 

further investigated. However, we still hypothesize that this, and other alterations, may be at least 

partially explained by HIV PI-induced UPR. Therefore, to identify this potential link, we isolated 

primary adipocytes from C57BL/6 wild-type and CHOP
-/-

 mice with a C57BL/6 background. 

Isolated primary adipocytes were induced to differentiate while concurrently treated with HIV 

PIs for 10-days. Intracellular lipid droplets were stained with Oil Red O.  As shown in Figure 26, 

similar to the findings in cultured murine and human adipocytes, LOPV and LOPV/RITV 

significantly inhibited intracellular lipid accumulation in wild-type mouse adipocytes. However, 

in the absence of CHOP, LOPV and LOPV/RITV had less effect on intracellular lipid 

accumulation. Also of note, AMPV (a non-inducer of ER stress) did induce lipid accumulation 

and its effect also was abrogated in absence of CHOP.  

 In addition, total RNA was analyzed from the gonadal fat pads of mice gavaged for eight 

weeks with LOPV/RITV and control solution. Preliminary data suggests a slight abrogration of 

HIV PI-induced lipid dysregulation and inflammation in AT with absence of CHOP (Figure 27). 

However, as CHOP
-/- 

does not result in a significant decrease of these pathologies, another 

pathway may also be involved in HIV PI-induced lipid dysregulation in adipocytes.  
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Figure 26. HIV PI-induced alteration of adipogenesis is abrogated in absence of CHOP. 

Primary murine pre-adipocytes were isolated from CHOP
-/-

 and wild type (WT) mice. Cells were 

induced to differentiate while concurrently treated with HIV PIs, and stained with Oil Red O 

after 10 days. Images were acquired with a 40 × objective lens. Representative images of two 

independent experiments are shown. 
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Figure 27. CHOP knockout may abrograte HIV PI-induced lipid metabolism dysregulation 

and inflammation in AT.  Male and female C57BL/6 WT and CHOP
-/-

 mice were fed a high fat 

diet and gavaged with either 4:1 LOPV/RITV or control solution for 8 weeks. mRNA from 

gonadal fat pads were analyzed by real-time RT-PCR with β-Actin as internal control. Value 

means ± SE are shown; n=6.  
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SIGNIFICANCE 

Although HIV PIs are extremely effective in decreasing viral load, HIV patients are at 

increased risk of developing metabolic syndrome and cardiovascular diseases on this regimen (9, 

22). Understanding the cellular mechanism underlying these complications is essential in 

development of alternative and improved therapies for chronically infected patients.  

The field of ER stress and the UPR has gained great attention during the last decade. The 

UPR signaling pathway plays an important role in regulating normal functions of various cells 

including hepatocytes, β-cells, and macrophages. Consequently, dysregulation of the UPR 

signaling pathway has been implicated in various human diseases such as diabetes, fatty liver, 

and cardiovascular diseases (45-47). Previous studies from our laboratory suggest that activation 

of ER stress represents an important cellular mechanism underlying HIV PI-induced 

inflammation and dyslipidemia (49-53, 190, 232). In addition, Djedaini et. al have recently 

shown a correlation of HIV PI-induced insulin resistance and the ER stress in adipocytes (54). 

However, little is currently understood of the mechanism underlying HIV PI-induced lipid 

metabolism dysregulation. 

 Here, we have shown that HIV PIs induce ER stress in a time and dose-dependent 

manner, similar to macrophages and hepatocytes (Figures 8-11). There was, however, a 

differential effect in differentiated versus non-differentiated adipocytes, likely owing to the 

fibroblastic-like physiology of preadipocytes. There has not yet been a study defining HIV PI-

induced alterations in fibroblasts, illuminating the nonsignificant induction of cell death and 

inflammatory response we found in 3T3-L1 preadipocytes. Nonetheless, we found slight 

increases in UPR protein and mRNA levels in our preadipocyte cell lines. We hypothesize this is 

do to our particular cell culture methods which commit the cell line to the adipocyte lineage. 
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In addition, not all HIV PIs activated the UPR to the same level, which may be explained 

by pharmacokinetic differences within this drug class. HIV PIs differ in molecular weight, 

ionization, and lipophilicity, all of which determine rate of transport through cellular membranes. 

While molecular weight and ionization for HIV PIs are similar and associated with passive 

diffusion, the lipophilicity (oil-water partition coefficient, or logP) differs. A strong correlation 

has been reported between log P and the intracellular accumulation of HIV PIs (260). The log P 

of AMPV and DRV are in the poor range of permeability while that of LOPV, RITV, ATZ, IDV, 

SQV, and NEFV are very permeable. These differences correlate strongly with our 

categorization of ER stress inducer and non-inducers. While pharmacokinetic studies have not 

been completed to determine the significance of these log P differences, the connection is 

notable and may be one molecular contribution to differences in dyslipidemia induction in the 

clinic.  

We have found that HIV PIs which induce high levels of the UPR also alter adipogenesis 

and lipid metabolism. Specifically, RITV and LOPV differentially affect both LD number and 

size (Figure 19). However, while RITV significantly decreased LD number, it also increased LD 

diameter. This data suggests LD fusion, as could occur at times of ER stress with alteration of 

CTT function (175). In addition, while higher concentrations of RITV increased lipid droplet 

formations, the physiological concentration in the clinical LOPV/RITV formulation inhibited 

lipid accumulation (6.25 µM). At the same time, LOPV dose-dependently inhibited 

differentiation. Taken together, there was a synergistic inhibition of LOPV-RITV in the 

clinically relevant 4:1 formulation at physiological concentration (12.5 µM). 

We hypothesized the induction of ER stress may be the cause of these alterations, as the 

ER and LD organelles are so closely intertwined (66, 69, 173, 174). Indeed, knockout of CHOP, 
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a downstream UPR transcription factor, abrogated HIV PI-induced adipogenesis dysregulation 

(Figure 26). In addition, we show preliminary data that this difference occurs in vivo. When 

CHOP
-/-

 mice are fed LOPV/RITV (4:1) for 8 weeks, the lipogenesis transcription factor 

SREBP-1c, as well as lipid protein lipase (LPL) is not upregulated in AT of CHOP
-/-

 as it is in 

wild-type mice.  

Some of the alterations in differentiation by HIV PIs can also be explained by affects on 

PPARγ. Particularly, we have found an increased binding of mRNA binding proteins HuR and 

CUGBP1 to PPARγ mRNA when 3T3-L1s were treated with RITV, but not LOPV (Figure 22). 

We have previously shown HIV PIs can increase HuR translocation from the nucleus to 

cytoplasm, indicating activation (232), and have seen similar occurrences in 3T3-L1s (Figure 

25). However, we have not yet determined a direct mechanism by which RITV results in 

activation of HuR and CUGBP1, although we hypothesize it is connected with our UPR 

activation findings.  

Some of our other findings also brought more questions. One example is from our AMPV 

treatments. AMPV is an ER stress non-inducer and shown in the clinic to have minimal lipid 

profile alterations. However, in cells treated with physiological concentrations (12.5 µM), we 

saw an increased lipid accumulation during adipogenesis which was abrogated with loss of 

CHOP. In addition, knockout of CHOP did not completely abrogate LOPV and RITV lipid 

metabolism alterations in vitro or in vivo, suggesting other pathways may be involved. 

It has recently been shown that autophagy is upregulated in visceral and not subcutaneous 

fat pads (261), a similar distribution of which HIV PIs also affect fat depots in patients. This 

pathway has also been shown to be involved in cellular lipid recycling and metabolism (205). 

We therefore began to investigate if HIV PI-induced dysregulation of adipocyte lipid metabolism 
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could be explained through this pathway. Our findings on this matter are intriguing, and can be 

found in the next chapter of this dissertation. 
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CHAPTER IV: HIV Protease Inhibitors LOPV and RITV Induce Autophagosome 

Accumulations in Adipocytes 

STUDY RATIONALE 

 Autophagy is a catabolic pathway in which intracellular components are degraded for 

energy production. Recently, autophagy has been shown to be strongly involved in lipid 

metabolism. Within adipocytes, autophagy aids in lipid store turnover and adipogenesis (262-

264). Loss of the autophagic pathway results in inhibition of differentiation in vitro and 

decreased white adipose tissue size and distribution in vivo.  

 Recent investigations have shown HIV PIs nelfinavir (NFV) and saquinavir (SQV) to 

induce autophagy in cancer cells (233, 234, 265). However, little is known whether HIV PIs can 

induce autophagy in adipocytes, and if this is involved in dysregulation of lipid metabolism. 

 There is growing evidence that ER stress can activate autophagy (119, 120, 125, 209). 

While this is hypothesized to occur for nascent protein degradation, other mechanistic inductions 

are ill-defined. We have previously demonstrated that HIV PIs significantly activate the UPR in 

adipocytes. Yet, not all HIV PI perturbations could be thoroughly explained by this pathway.  

We therefore began to investigate if autophagy induction is also involved in HIV PI-induced 

dysregulation of adipocyte lipid metabolism. After finding that autophagy is induced by these 

drugs, we further pursued how HIV PI-induced ER stress and autophagy are connected. 
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RESULTS 

Effect of HIV PIs on autophagy activation in adipocytes 

 LC3B western blot analysis is a common method in determining activation of autophagy 

(266). At autophagic induction, cytosolic LC3B-I is cleaved and lipidated to form membrane-

associated LC3B-II. To determine if HIV PIs increase the ratio of LC3BII:I, non-differentiated 

and differentiated 3T3-L1 cells were treated with HIV PIs (12.5 μM) for various time points (12, 

24, and 48 h), and total cell lysates separated on a 12% SDS-PAGE gel. Peak conversion was 

found to occur at 48 h, and cells were treated dose-dependently at this time point. Greater 

activation of LC3B was found in differentiated 3T3-L1s than non-differentiated (Figure 28), but 

both were significant. Similar results were seen in a human adipocyte cell line (ASC) (Figure 

29).  

 

HIV PIs increase autophagosomes in 3T3-L1s 

Although immunoblotting LC3B is a frequent method used in autophagy detection, there 

remain many pitfalls in this assay that cannot be simply addressed in one experiment (12, 13). 

Therefore, we further confirmed the effect of HIV PIs on autophagosome accumulation using 

electron microscopy, the current gold standard of autophagy induction. As shown in Figure 30, 

there was a significant increase of autophagosome density with LOPV, LOPV/RITV, and RITV 

treatments in 3T3-L1 cells. 

 

Second Generation HIV PI Darunavir does not activate autophagy 

 Darunavir (DRV), with RITV boost, now surpasses LOPV/RITV prescription numbers in 

the clinic. In fact, the newest HIV treatment guidelines recommend treatment-naïve patients 

beginning HAART regimens containing HIV PIs to be treated with DRV/RITV (4:1). As there is  
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Figure 28. HIV PIs increase LC3B II:I ratio. A) Non-differentiated and B) differentiated 3T3-

L1s were treated with increasing concentrations of HIV PIs for 48 h. Representative 

immunoblots against LC3B and Actin are shown. Densitometry was determined using Quantity 

One. Values are means ± SE from four independent experiments; * p<0.05, ** p<0.005 
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Figure 29. HIV PIs increase LC3B II:I ratio in human ASCs. Human adipose stem cells were 

induced to differentiate and then treated with increasing concentrations of HIV PIs for 48 h. 

Representative immunoblots of LC3B and Actin from two separate experiments are shown. 
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Figure 30. HIV PIs quantifiably increase autophagosomes in 3T3-L1 cells. Non-

differentiated 3T3-L1s were treated with 12.5 µM HIV PIs, 50 nM Rapamycin (RM), or DMSO 

control for 48 h. Cells were processed for transmission electron microscopy as described in 

“Methods.” A) Representative images for each treatment at 2,000 × and 4,000 ×. B) The density 

of autophagosomes were determined by point counting at 4,000 ×. Statistical significance 

relative to vehicle control: **p<0.05x10^5.  
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currently no clinical evidence suggesting DRV has metabolic side effects, and we previously 

found little activation of the UPR by DRV, we tested whether DRV induces autophagy similarly 

as LOPV/RITV. As shown in Figure 31, DRV did not significantly increase LC3B conversion or 

autophagosome formation compared to control.  

Effect of HIV PIs on autophagic flux 

 The increase of autophagosome number does not always indicate increase of autophagic 

activity. Accumulation of autophagosomes can be caused by an increase in the induction of 

autophagy and/or an impairment of autophagolysosomal maturation. We therefore examined the 

effect of HIV PIs on autophagic flux.  

 Monodansylcadaverine (MDC) is an autofluorescent drug that naturally accumulates in 

lower pH vesicle membranes, which is characteristic of late autophagosomes (115). When non-

differentiated 3T3-L1 cells were treated with HIV PIs and subsequently stained with MDC, HIV 

PI treatment did increase punctate staining, but did not appear to be dose-dependent (Figure 32). 

In addition, results did not appear to quantitatively define HIV PI-induced autophagosome 

induction as our previous assays. As MDC staining is already cited to not be the most reliable 

assay due to high dependence on intracellular pH, vacuole pH, and therefore differences in 

cellular environment, we continued our investigations to a p62 analysis. 

p62 is nuclear membrane protein found to have an LC3-interacting region (LIR) by 

which it binds to specific residues of LC3. p62 can serve as a link between LC3B and 

ubiquitinated substrates, and has been proposed to be specifically degraded through the 

autophagic pathway (267, 268). Therefore, the activity of autophagy should inversely correlate 

with p62 protein levels. As seen in Figure 33, when differentiated 3T3-L1 adipocytes were 

treated with HIV PIs, there is an accumulation of p62 at higher (25 µM) concentrations.  
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Figure 31. Darunavir does not significantly activate autophagy in 3T3-L1s. A) Differentiated 

3T3-L1s were treated with increasing concentrations of darunavir (DRV) or DMSO control for 

48 h. Density of immunoreactive bands against LC3B and Actin was determined by Quantity 

One. Value means ± SE are shown. B) Non-differentiated 3T3-L1s were treated with 12.5 µM of 

DRV for 48 h, and cells analyzed by electron microscopy. Representative images at 2,000 ×  are 

shown.  
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Figure 32.  HIV PIs increase late autophagosome accumulation without dose-dependence. 

Non-differentiated 3T3-L1 cells were treated with HIV PIs (12.5 or 25 µM), rapamycin (RM) 50 

nM, or DMSO control for 24 h. Cells were stained with 25 µM MDC for 5 min at 37ºC. Images 

were acquired on a fluorescent microscope with a 60 × objective. Micrographs were desaturated 

for easier visualization of punctuate. Images are representative of four separate experiments. 
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Figure  33.  Effect of HIV PIs on p62 degradation. Differentiated 3T3-L1s were treated with 

increasing concentrations of HIV PIs for 48 h, and total cell lysates analyzed. A) Representative 

immunoblots of p62 and Actin. B) Relative protein level of p62 was determined by Quantity One 

using Actin as loading control. Values are mean ± SE of three independent experiments. 

Statistical significance relative to DMSO contol (0); *p<0.05, **p<0.005. 
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However, this may be attributable to inhibition of the proteasome (see Discussion).  

To further follow this observation, we examined the effect of HIV PIs on degradation of 

GFP-tagged LC3B. When cells are transfected with a plasmid containing this construct, green 

punctuate are formed at the induction of autophagy as GFP-LC3BII accumulates at 

autophagosomes, versus a homogenous cytoplasmic green from GFP-LC3BI (Figure 34A). 

However, as these autophagosomes mature into autolysosomes, the LC3B on the internal 

membrane is degraded while GFP is released into the cytosol. This can be tracked by Western 

blot analysis. We found an accumulation of GFP when 3T3-L1 cells infected with a retrovirus 

containing this construct were treated with HIV PIs, with more accumulation at 48 than 24 h 

(Figure 34 B,C). This suggests that the fusion of autophagosomes with lysosomes is being 

completed in the presence of HIV PIs.  

 

Effect of CHOP and ATF-4 on HIV PI-Induced Autophagy 

 In order to identify the potential link between HIV PI-induced ER stress and subsequent 

autophagy induction, we first examined the effect of CHOP on HIV PI-induced autophagy stress 

by overexpressing and knocking down CHOP with constructed lentiviral vectors (see Methods). 

With knockdown of CHOP, we saw a decrease of total LC3B protein levels, while 

overexpression had little affect (Figure 35A). In addition, there was a slight decrease of total 

LC3B, and insignificant alterations of LC3BII:I when 3T3-L1s overexpressing CHOP were 

treated with HIV PIs (Figure 35B).  

 There is current growing evidence of a PERK-autophagy link (120, 130, 269). As ATF-4 

is upstream of CHOP, and HIV PIs significantly increased ATF-4 in our model, we next  
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Figure 34. Effect of HIV PIs on GFP-LC3B cleavage. A) 3T3-L1 cells were stably transfected 

with a plasmid containing GFP-tagged LC3B, and treated with HIV PIs, rapamycin (RM), or 

vehicle control (DMSO) for 48 h. The fluorescence images were recorded using a 60 × oil lens 

with FITC filter. Micrographs are desaturated for easier visualization. B) 3T3-L1 cells were 

infected with a retrovirus containing GFP-LC3B and treated with individual HIV PIs (12.5 µM) 

for 24 or 48 h. Shown are representative immunoblots against GFP and Actin. C) 3T3-L1 cells 

infected with retroviral GFP-LC3B were treated with HIV PIs (12.5 or 25 µM) for 48 h. 

Representative images of GFP-LC3 and free GFP are shown.  
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Figure 35. CHOP and HIV PI-induced LC3B. A) 3T3-L1s were infected with lentivirus 

containing either shRNA against CHOP (shCHOP1), recombinant GFP-CHOP (CHOP-over), or 

control virus for 48 h. Total cell lysates were used for Western blot analysis. Shown are 

representative immunoblots against CHOP, LC3B, and Actin as loading control. B) 3T3-L1 cells 

were infected with recombinant constitutively active CHOP or control virus. Stable colonies 

were treated with HIV PIs (12 or 25 µM), DMSO control (0), or positive controls (TG and RM 

50 nM) for 24 h. Shown are representative immunoblots against LC3B and Actin from two 

separate experiments.  
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examined whether ATF-4 is the connecting link of HIV PI-induced UPR and autophagy. Using a 

lentiviral shRNA specifically targeting mouse ATF-4, mRNA ATF-4 level was successfully 

down-regulated by more than a 50% in 3T3 cells (Figure 36A). The downregulation of ATF-4 in 

3T3-L1s inhibited both LOPV- and LOPV/RITV-induced increases of total LC3B protein, but 

had no effect on RITV-induced increase of LC3B. In addition, conversion of LC3BII:I was not 

significantly altered in this model. However, the results demonstrate that HIV PI-induced UPR 

may lead to an increased ability of autophagosome formation with increased substrate LC3B.  
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Figure 36. ATF-4 and HIV PI-induced LC3B.  3T3-L1s were infected with lentiviral  shRNA 

specific to ATF-4, or scramble control. Stable colonies were selected using puromycin. A) The 

knockdown efficiency of shRNA was determined by real-time RT-PCR and Western blot 

analysis. B) Stable colonies of 3T3-L1 cells infected with control or shRNA lentivirus were 

treated with HIV PIs (12 and 25 µM), DMSO (0), or rapamycin (RM) 50 nM for 24 h. 

Representative immunoblots are shown. Relative protein levels of LC3B using Actin as loading 

control were determined with Quantity One. Values are mean ± SE of three independent 

experiments; *p<0.05 compared to vehicle control; ##p<0.005 compared to control shRNA.  
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SIGNIFICANCE 

 HIV PI therapy will not, and should not, be discontinued in the near future due to their 

high effectiveness in controlling viral load in patients. Instead, investigators now need to focus 

on inhibiting HIV PI-induced risks of metabolic syndrome and cardiovascular disease (22, 31, 

236). Elucidating the effects of this drug class can have on the metabolically important adipose 

tissue, and central adipocytes, is essential in development of improved therapies. 

In order to fully understand HIV PI-induced lipid metabolism dysregulation in 

adipocytes, we turned to the autophagic pathway. Autophagy has been recently identified as a 

new cellular target for dysregulation of lipid metabolism and accumulation (262). In addition, 

autophagy is also shown to be involved in body lipid profile and pathologically in metabolic 

diseases such as obesity (261, 270). 

  We have shown that some HIV PIs induce autophagy dose-dependently in mouse and 

human adipocytes (Figures 28, 29). In fact, the HIV PIs we have found that do not induce 

autophagy fall under the 'UPR non-inducer' subclass (i.e. DRV - Figure 31). In addition, 

autophagy activation did not occur to the same extent in non-differentiated as differentiated 

adipocytes, similar to our HIV PI-induced UPR results.  

 By using TEM, we have further supporting evidence that HIV PIs LOPV and RITV 

siginificantly upregulate autophagosome production (Figure 30). This upregulation does not 

seem to be through inhibition of autophagsome-lysosome fusion (Figures 33, 34). In this regard, 

we would like to address the accumulation of p62 with higher concentrations of HIV PI 

treatments. The nuclear membrane protein p62 has been proposed to be degraded specifically 

through autophagy. Therefore, the activity of autophagy should inversely correlate with p62 

protein levels (267, 271, 272). However, we disagree with the specificity of this assay as other 
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sub-populations of p62 may also exist (273). Particularly, one recent publication has 

demonstrated that p62 associates with the 26S proteasome, and inhibition of proteasome activity 

leads to p62 accumulation (274). HIV PIs have already been shown to inhibit the activity of the 

26S proteasome dose dependently, with LOPV and RITV inhibiting chymotryptic activity 50-

60% at 25 µM (223). In our findings, p62 did not accumulate until this concentration. In 

addition, HIV PIs did not inhibit autolysosome cleavage of the GFP-LC3 construct. Taken 

together, we do not believe HIV PIs are inhibiting autophagic flux, although further assays are 

needed to definitively ascertain this observation. 

 We have demonstrated that HIV PIs activate the UPR at an earlier time point than 

autophagy, and many similarities of activation occur for both pathways. Therefore, we next 

aimed to determine a link between HIV PI-induced UPR and autophagy. We began this 

investigation with CHOP, as we had seen abrogation of HIV PI-induced adipocyte lipid 

metabolism dysregulation with absence of CHOP. Indeed, CHOP knockout decreased total 

LC3B, but CHOP overexpression had only a slight effect on HIV PI-induced LC3B protein. 

However, this could be accounted for an already saturated system, and further incricate studies 

need to be completed to fully elucidate this result. 

 We next went upstream to ATF-4, as others have already shown a PERK-pathway 

connection with autophagy induction (120, 130, 269). We show ATF-4 knockout abrogates 

LOPV and LOPV/RITV upregulation of LC3B protein. As written in the final discussion, 

Rzymski et. al have recently shown ATF-4 to bind to the 5‟UTR of the LC3B promoter at times 

of hypoxia-induced ER stress (130). As with our studies, when ATF-4 was knockdown with 

siRNA there was a decrease in total LC3B protein levels. However, our results also suggest 

CHOP plays a major role in ER stressed-induced autophagy. While CHOP is downstream of 
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ATF-4, if the findings of Rzymski et. al hold true, knockdown of CHOP should have little to no 

affect on LC3B levels. We did not find this to be the case, and have additional data that suggests 

CHOP plays a major role in ER-stress induced autophagy in hepatocytes (Chapter 5). Therefore, 

CHOP may act separately independently of ATF-4 in activating autophagy, as has been 

suggested by others (275).  

 HIV PI cellular alterations are indeed complex, but our studies are beginning to piece 

together how HIV PIs induced lipid metabolism dysregulation. We have already shown HIV PIs 

to differentially activate ER stress and autophagy in adipocytes. We hypothesize inhibition of 

HIV PI-induced ER stress will relieve downstream activation of autophagy and lipid metabolism 

dysregulation. Such a hypothesis has translated well to another central cell type in lipid 

metabolism regulation, hepatocytes, as shown in the next chapter. 
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CHAPTER V: Raltegravir Inhibits LOPV/RITV-Induced Autophagosome Accumulation 

in Hepatocytes 

STUDY RATIONALE 

 Although HAART has drastically decreased the mortality of those living with HIV, it has 

also been linked to cardiovascular complications, with recent demonstrations that the PI 

component is much to blame (21-23, 276). In addition, many of these patients also have non-

alcoholic fatty liver disease (NAFLD), or even nonalcoholic steatohepatitis (NASH) (40, 41), 

which is correlated with HIV PI-induced insulin resistance and visceral fat hypertrophy. 

 Endoplasmic reticulum (ER) stress may be a central pathway involved in HIV PI-induced 

NAFLD. In nutrient-induced NAFLD, saturated fatty acids induce ER stress, activating 

deleterious pathways that lead to increased inflammation and insulin resistance (58, 246, 277, 

278). We have previously shown that HIV PIs induce ER stress and its signaling pathway, the 

unfolded protein response (UPR), leading to lipid metabolism dysregulation in hepatocytes (49, 

50, 222). Some HIV PI-induced lipid accumulation in hepatocytes is also directly attributed to an 

increased activation of sterol regulatory element binding protein (SREBP)-1, a lipogenic 

transcription factor activated at times of ER stress (70, 279). 

Autophagy is another cellular pathway now known to be involved in hepatocyte lipid 

metabolism regulation. Although autophagy was first defined as a degradative pathway to 

remove accumulated proteins, infectious particles, or supply the cell with ATP, it is now known 

that this pathway is also involved in lipolyis and LD turnover (205, 280). When autophagy is 

inhibited in hepatocytes, LDs increase (205) not due to increased triglyceride synthesis nor 

decreased VLDL secretions (225). In addition, mice lacking autophagy have enlarged lipid laden 
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livers with increased triglyceride and cholesterol levels (205). Therefore, we hypothesize that 

alterations in autophagy could be another underlying mechanism in HIV PI-associated NAFLD.  

Recently, we have demonstrated that the integrase inhibitor raltegravir (MK-0518) can 

inhibit HIV PI-induced lipid metabolism dysregulation in hepatocytes (222). In addition, we 

have shown HIV PIs to significantly induce autophagy in adipocytes. Using hepatic cell lines 

and primary cells, we aimed to determine if raltegraivir inhibits LOPV/RITV-induced lipid 

accumulation through autophagy. In addition, we further elucidated a link between HIV PI-

induced ER stress and autophagy. 
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RESULTS 

Raltegravir inhibits HIV PI-induced lipid accumulation in hepatocytes 

We have previously shown that HIV PIs with metabolic side effects in the clinic increase 

fatty liver in vivo, and alter lipid metabolism in hepatocytes in vitro (49, 222). In addition, we 

now have evidence that raltegravir can inhibit LOPV/RITV hepatocyte lipid accumulation as 

shown in both Figure 37 and (222). However, the mechanism behind this inhibition is not fully 

elucidated, only partially explained by an abrogation of UPR activation (222). 

 

HIV PI combination LOPV/RITV 4:1 induces autophagy in hepatocytes 

 As autophagy is now known to be a major pathway involved in lipid metabolism (205, 

225), we next tested if LOPV/RITV alteration of lipid metabolism in hepatocytes could also be 

explained by an alteration of autophagy. As previously mentioned, activation of LC3B from 

cytosolic (I) to cleaved and lipidated form (II) is frequently analyzed by Western blot to 

determine if autophagosome numbers are increasing (266). We found that in a both time and 

dose-dependent manner, LOPV/RITV did increase LC3BII:I ratio in rat and mouse primary 

hepatocytes (Figure 38), as well as a human hepatocyte cell line (HepG2 - data not shown). As 

24 h was the peak activation, we used this time point for subsequent experiments. 

 

Raltegravir inhibits LOPV/RITV induction of autophagy 

 We next wanted to elucidate if raltegravir, an anti-retroviral with little known clinical 

lipid side effects, activated autophagy similarly as LOPV/RITV which has a high clinical lipid 

side effect profile. Rat primary hepatocytes (RPH) were treated with increasing concentrations of 

raltegravir at 24 h. As seen in Figure 39A, there was actually a trend of decreasing LC3BII:I  
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Figure 37. Raltegravir abrogates LOPV/RITV-induced lipid accumulation in rat primary 

hepatocytes. RPH were treated with raltegravir (25 µM) and LOPV/RITV (25 µM) together or 

alone for 48 h. Cells were fixed and stained with Oil Red O and analyzed using a light 

microscope at with a 40 × objective lens. Shown are representative images from three 

independent experiments.  
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Figure 38. LOPV/RITV 4:1 increases LC3BII:I in rat and mouse primary hepatocytes. A) 

RPH were treated with 25 µM LOPV/RITV for 0, 1, 3, 6, 12, or 24 h and B) MPH were treated 

with increasing concentrations of LOPV/RITV at 24 h. Representative immunoblots of LC3B 

and Actin are shown. Densitometry was determined using Image J with Actin as loading control. 

Values are mean ± SE of three independent experiments; *p<0.05 and **p<0.005 compared to 

vehicle control (0). 
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Figure 39. Raltegravir abrogrates LOPV/RITV-induced LC3BII:I in hepatocytes.  RPH 

were treated with increasing concentrations of raltegravir with or without LOPV/RITV 25 µM 

(A) or increasing concentrations of LOPV/RITV with or without raltegravir 25 µM (B) for 24 h. 

Representative immunoblots against LC3B and Actin are shown. Densitometry was determined 

with Image J. Values are mean ± SE of three independent experiments; *p<0.05 compared to 

vehicle control; #p<0.05 and ##p<0.005 compared to same dose of single treatment. 
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ratio with raltegravir treatment. In addition, when added to increasing concentrations of 

LOPV/RITV treatments, raltegravir significantly inhibited LOPV/RITV dose-dependent increase 

of LC3BII:I. Increasing concentrations of raltegravir given with 25 µM of LOPV/RITV showed 

a dose-dependent decrease in LC3BII:I ratio (Figure 39A,B).  

HepG2 cells were treated with 25 µM raltegravir and/or LOPV/RITV for 24 hours, and 

mRNA analyzed by real-time RT-PCR. As shown in Figure 40, LOPV/RITV significantly 

increased the transcripts of proteins important in macroautophagy induction (Atg12 and Beclin1 

(BECN1)), while raltegravir abrogated this. ULK1 and VPS34, also essential proteins for 

macroautophagy, followed the same trend although increases in mRNA levels by LOPV/RITV 

were not statistically significant compared to control. 

 To ascertain if autophagosomes were indeed increased by LOPV/RITV, and if that 

increase was abrograted by raltegravir, we assessed treated RPH with both 

monodansylcadaverine (MDC) stain and transmission electron microscopy (TEM). MDC is a 

fluorescent dye that normally accumulates in high pH vacuoles, such as late autophagosomes. 

We found that indeed LOPV/RITV treatment increased MDC accumulations, and raltegravir 

significantly inhibited this (Figure 41). This held true for the gold standard of autophagy 

induction, TEM (Figure 42).  

 

Inhibition of autophagy induction by raltegravir is CHOP-Dependent  

 There is growing evidence of a UPR and autophagy link (129, 130). From previously 

acquired datat, we hypothesized raltegravir inhibition of LOPV/RITV-induced autophagy could 

occur via inhibition of UPR induction. We have previously shown HIV PIs induce CHOP at both  
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Figure 40. Raltegravir abrogrates HIV PI-induced autophagy at the mRNA level.  RPH 

were treated with raltegravir (25 µM) and LOPV/RITV (25 µM) separately or in combination for 

24 hours. Relative mRNA levels of Atg12, Beclin 1(BECN1), ULK1 and 2 were determined by 

real-time RT-PCR with β-Actin as internal control. Values are mean ± SE from three 

independent experiments. Statistical significance *p<0.05, **p<0.005 compared to vehicle 

control (-/-) and  #p<0.05 compared to LOPV/RITV alone. 
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Figure 41. Raltegravir abrogrates LOPV/RITV-induced late autophagosome accumalation 

in rat primary hepatocytes. RPH were treated with raltegravir (25 µM) and LOPV/RITV (25 

µM) separately or combined for 24 h. Cells were stained with MDC, and fluorescence images 

immediately acquired using a 60 × oil lens with a DAPI filter. Micrographs were desaturated for 

easier visualization of punctuates. Images representative of three independent experiments. 
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Figure 42. Raltegravir abrogates HIV PI-induced autophagy induction in hepatocytes. RPH 

were treated with raltegravir (25 µM) and LOPV/RITV (25 µM) separately or combined for 24 

h, and cells processed for transmission electron microscopy as described in “Methods.” A) 

Representative images at 4,000 ×. B) Density of autophagosomes were determined by point 

counting at 4,000 × using a 1.5 cm lattice. Point counts were completed in at least 15 cells per 

treatment, 4 images per cell. 
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time and dose-dependent manners in numerous cell types (49, 51, 53). In addition, we have 

shown that HIV PI-induced liver fat accumulation is altered in CHOP
-/-

 mice relative to their 

wild type counterpart. Raltegravir inhibited LOPV/RITV lipid accumulations in murine livers 

(222), and we had preliminary evidence this was altered with loss of CHOP. 

 Therefore, we turned to our CHOP
-/-

 model to determine if raltegravir abrogation of 

LOPV/RITV-induced autophagy was through the CHOP pathway. As seen in Figure 43, 

raltegravir failed to inhibit LOPV/RITV-induced LC3B conversion with the absence of CHOP. 

This demonstrates a vital role of the CHOP pathway in the mechanism underlying raltegravir 

inhibition of LOPV/RITV-induced autophagy.  

We repeated this investigation in vivo. As shown in Figure 44, preliminary data suggested 

raltegravir did inhibit LOPV/RITV-induced LC3B protein in C57BL/6 fed a normal diet. This 

was followed by a larger experiment in which C57BL/6 wild-type and CHOP
-/- 

male mice were 

treated with control solution, LOPV/RITV, raltegravir, or both (50mg/kg) for 4 weeks. Livers 

were isolated for protein analysis by Western blot. As seen in Figure 45, we saw a significant 

decrease of LOPV/RITV-increased total LC3B with raltegravir treatment, with was abrogated 

with loss of CHOP.  

 

LOPV/RITV and Raltegravir Effects on Autophagic Flux 

In our animal experiments, alteration of LC3BII:I was not as significant as total LC3B 

changes. While lack of raltegravir conversion was abrogated with loss of CHOP, all other 

treatments were not significant in both experiments (Figures 44, 45). Some of our hypotheses to 

explain these results include a low „n‟ for treatment groups, degradation of small-short lived 

proteins in our lysates, and/or an alteration of autophagy flux. We therefore further investigated  
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Figure 43. CHOP plays a central role in raltegravir inhibition of LOPV/RITV-induced 

LC3BII:I. MPH from wild-type and CHOP
-/-

 C57BL/6 male mice were isolated and treated as 

shown for 24 h. A) Representative immunoblots against LC3B and Actin. Denisty of 

immunoreactive bands was analyzed by Quantity One and relative protein levels determined with 

Actin as loading control. B) Ratio of LC3BII/I and C) total LC3B protein. Values are mean ± SE 

of three independent experiments. Statistical significance *p<0.05, **p<0.005 compared to 

vehicle control and #p<0.05, ##p<0.005 compared to equivalent treatment of wild-type cells. 
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Figure 44. Raltegravir inhibits LOPV/RITV-induced LC3B. C57BL/6 wild-type male mice 

were fed a normal chow diet and treated with LOPV/RITV (50mg/kg) and raltegravir (50mg/kg), 

separately or in combination for 4 weeks. Protein from liver samples was analyzed by Western 

blot. A) Immunoblots against LC3B and Actin. B) Relative protein ratios using Actin as loading 

control of total LC3B and LC3BII:I. Values are mean ± SE. n=5 for control (Con.), Raltegravir 

(Ral.), and LOPV/RITV, while n=3 for LOPV/RITV+Raltegravir.  
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Figure 45. Raltegravir lack of autophagy induction relies on CHOP. C57BL/6 wild-type and 

CHOP
-/-

 male mice were fed a high fat diet and treated with LOPV/RITV (50mg/kg) or 

raltegravir (50mg/kg) in combination or separately for 4 weeks. Protein from liver samples was 

analyzed by Western blot. A) Representative immunoblots against LC3B and Actin. B) Relative 

protein levels with Actin as loading control of total LC3B and LC3BII:I. Values are mean ± SE. 

n=5; *p<0.05, **p<0.005 compared to control; #p<0.05 and ##p<0.005 compared to wild-type. 
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how autophagy flux is altered in our models. 

As explained in Chapter 4, p62 is a nuclear membrane protein proposed to be specifically 

degraded through autophagy (267). We analyzed p62 levels of WT and CHOP
-/- 

MPH treated 

with increasing concentrations of LOPV/RITV with or without 25 µM raltegravir. As shown in 

Figure 46, p62 accumulated at higher concentrations of LOPV/RITV, even in the presence of 

raltegravir (which did not induce accumulation alone). Loss of CHOP abrogated this 

accumulation. While p62 accumulation may be partially explained by inhibition of proteasome 

by LOPV/RITV (Chapter 4), the CHOP pathway is shown here to also be involved in this 

accumulation. We therefore continue our studies to determine if LOPV/RITV did indeed inhibit 

autophagolysosome action.  

HepG2 cells were stably transfected with a plasmid containing GFP-tagged LC3B. As 

shown in Figure 47A, raltegravir successfully inhibited LOPV/RITV-induced GFP-punctate, 

supporting our previous results. When autophagosomes fuse with lysosomes, LC3BII is 

degraded, while the GFP is released to the cytoplasm as it is resistant to these proteases (281, 

282). When lysosomal activity is inhibited by pH neutralization (i.e. NH4Cl) or protease 

inhibitors (i.e. Leupeptin), GFP-LC3BII cleavage will not occur, and GFP will not accumulate in 

the cytoplasm. As shown in Figure 47B, addition of lysosomal inhibitors did decrease GFP 

accumulation compared to control. However, LOPV/RITV treatment slightly increased GFP 

accumulation. 

We further analyzed autophagy flux by inhibiting lysosomal action in RPH treated with 

LOPV/RITV and raltegravir. As shown in Figure 48, we have preliminary data suggesting both 

LOPV/RITV and raltegravir do not induce LC3B conversion. Rather, LOPV/RITV treated in the 

presence of lysosomal inhibitors did not induce LC3BII accumulation any more than lysosomal  
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Figure 46. p62 accumulates with high concentrations of LOPV/RITV treatment. MPH from 

wild-type and CHOP
-/-

 C57BL/6 male mice were isolated and treated as shown for 24 h. Shown 

are relative immunoblots against p62 and Actin. Relative protein levels of p62 were determined 

by Quantity One with Actin as loading control. Values are mean ± SE of three independent 

experiments. *p<0.05 **p<0.05 compared to DMSO control. 
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Figure 47. Affect of HIV PIs and raltegravir on GFP-LC3 cleavage in HepG2 cells. HepG2 

cells were stably transfected with a plasmid containing GFP-tagged LC3B. A) Cells were treated 

with 25 µM LOPV/RITV and 25 µM raltegravir (separately or in combination) for 24 h. 

Fluorescent images were acquired using a 60 × oil lens and a FITC filter. B) Cells were treated 

with 15 or 25 µM LOPV/RITV with or without 25 µM raltegravir for 24 h, in the presence or 

absence of lysosomal inhibitors (100 µM leupeptin/25 mM NH4Cl). LC3B-GFP and free GFP 

levels were determined by Western blot analysis using GFP antibody and Actin as loading 

control. Shown are representative images from at least three independent experiments. 
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Figure 48. LOPV/RITV and raltegravir may not increase LC3BI activation. RPH 

hepatocytes with pretreated with 25 mM NH4Cl/100 µM Leupeptin for 2 hours, followed by 25 

µM LOPV/RITV (L/R) or raltegravir (Ral.) for 24 h. Shown are representative immunoblots 

against LC3B and Actin. Densitometry was determined by Quantity One with Actin as loading 

control. 
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inhibitor alone. Rather, accumulation of LC3BII:I in previous Western blots may be due to an 

inhibition of LC3BII degradation instead of increased LC3BI activation. This inhibition may 

then be relieved with raltegravir. 

SIGNFICANCE 

 Debatably one of the most severe side effects of HIV PIs is the induction of NAFLD (42, 

283). Fatty liver can result in insulin resistance and dyslipidemia, contributing to the 

atherosclerotic risk in this patient population. Therefore, understanding the mechanism 

underlying HIV PI-induced fatty liver will aid in future alternative therapies. 

Autophagy is now understood to be central in cellular lipid metabolism. In addition, 

autophagy has been recently shown to play key roles in metabolic diseases such as obesity and 

NAFLD (99, 103, 284). In the liver, basal autophagy is important in degradation of misfolded 

proteins and nonfuctional organelles, but alterations in the pathway can lead to induction of 

inflammation, cell death (285), and lipid overload (205). These are in fact the same pathologies 

noted with HIV PIs (49, 191, 232). Therefore, we completed this study to investigate if HIV PI 

hepatic alterations could be due to alterations in autophagy. 

We show LOPV/RITV to time and dose-dependently increase autophagy. At this time, 

we cannot definitvely state whether the increase of LC3BII and late autophagosome 

accumulations are directly through induction of the pathway or inhibition of autophagolysosome 

action. Although p62 did dose-dependently accumulate in MPH with LOPV/RITV treatment, we 

believe this is in fact is due to HIV PI inhibition of proteasome activity (please see Chapter 4 and 

final Discussion). However, preliminary evidence with the use of lysosomal inhibitors 

demonstrates LOPV/RITV can not induce an increase of LC3B accumulation farther than 

lysosomal inhibition alone. Further studies using lysosomal inhibitors need to be completed to 
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fully elucidate if LOPV/RITV inhibits autophagolysosome action beyond its ability to inhibit 

proteasome action.  

What we found most intriguing was the integrase inhibitor raltegravir was able to 

abrogate LOPV/RITV-induced autophagy (Figures 39-42). We have previously shown 

raltegravir to inhibit LOPV/RITV lipid accumulations in hepatocytes (222), and this finding 

implied a novel mechanism underlying this phenomenon.  

HIV PIs significantly activate CHOP in multiple cell types including hepatocytes, as well 

as in vivo mouse models (49, 51, 53). Autophagy is now known to be induced through the UPR 

(116, 117, 128). We therefore investigated if raltegravir‟s ability to inhibit LOPV/RITV-induced 

autophagy was through the CHOP pathway. Indeed, the loss of CHOP abrogated this 

phenomenon (Figures 43-45), and this occurred for both total LC3B protein and LC3BII:I ratio 

increases. However, knockout of CHOP resulted in an increase of LOPV/RITV-induced 

LC3BII:I, with no alteration at the total LC3B level (Figure 43). This contradiction may be due 

to autophagolysosome inhibition, and we are currently investigating if this is the case.  

In short summary, addition of raltegravir suppresses LOPV/RITV-induced lipid 

accumulation through alterations of the autophagy pathway. This phenomenon is shown here to 

be through the UPR-CHOP pathway. Therefore, we hypothesize that inhibition of HIV PI-

induced ER stress by alternative therapies will significantly aid in reducing HIV PI-induced 

dysregulation of lipid metabolism that leads to clinical metabolic diseases.   
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CHAPTER VI: Final Discussion 

Successful therapy for HIV-infected patients has increased greatly in the past decade. 

HAART no longer just includes inhibiting viral reverse transcription and protease, but also 

inhibition of viral fusion and integration. The success of the HIV PI class in suppressing patient 

viral load is undeniable, especially in treatment-experienced patients (286, 287). Although the 

benefit of HIV PIs is greater than the risk, large side effects still remain. Unfortunately, these 

include long-term metabolic complications including dyslipidemia, insulin resistance, and 

lipodystrophy, all of which are high risk factors for atherosclerosis and heart disease (19, 21, 22, 

276). In order to decrease the risk to benefit ratio, the mechanism underlying HIV PI-induced 

metabolic side effects needs to be addressed and resolved through alteration of HIV PI structures 

or inclusion of alternative therapies in the regimen. 

Abnormalities seen in the clinic begin at the cell. Therefore, to understand how HIV PIs 

induce dyslipidemia and lipodystrophy, the mechanism by which HIV PIs modify cellular lipid 

metabolism needs to be elucidated. While it is often difficult to determine which cellular 

pathways are implicated in drug-induced pathologies, ER stress and autophagy are already 

shown to be directly involved in cellular lipid metabolism.  

We hypothesize HIV PIs dysregulate lipid metabolism in adipocytes by activating ER 

stress and autophagy. In addition, while we have previously shown HIV PIs to dysregulate lipid 

metabolism in hepatocytes through ER stress, autophagy dysregulation may also play a role. 

Finally, we surmise inhibiting HIV PI-induced ER stress will abrogate lipid metabolism 

dysregulation in these metabolically important cell types.   
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HIV PIs in Adipocytes 

 When it comes to investigating cellular mechanisms underlying HIV PI side effects, 

surprisingly little work has been accomplished in adipocytes. Until the last decade, the 

complexity of adipocytes and adipose tissue had hindered in depth studies in this field as well as 

metabolic disease research. In the 2000s, HIV PI affects in adipocytes focused on inhibition of 

differentation. As a result of these investigations, there was much contradiction as well as little 

insight into mechanistic explanations.   

 Contradictions began in 1998 with the first two major studies in this realm. Here, HIV PI 

alterations of adipogenesis showed opposite results with IDV and RITV. While using the same 

cell lines, very similar culture conditions, and Oil Red O staining, Gagnon et. al found IDV and 

RITV to potentiate differentiation (288), while Zhang et. al found inhibition (245). In addition, 

Zhang et. al also found AMPV, a drug with little metabolic side effects, to also inhibit 

differentiation.  

More results followed suit, and included almost all HIV PIs (156, 192, 193, 239-244, 

289, 290). Due to these inconsistencies, our studies began with preliminary results already 

published. We began simply by optimizing differentiation protocols for our cellular models to 

ensure downstream assays were finding conclusions in differentiated, and not partially 

differentiated, adipocytes. As pre-adipocytes are fibroblastic in nature, we felt a mixed cellular 

population would distort the results.  

Once our methods were confirmed, we did one large experiment to determine HIV PI 

affects on 3T3-L1 differentiation by treating cells while concurrently inducing adipogenesis. We 

found this assay to be extremely concentration-dependent, with some HIV PIs (IDV, SQV, NFV) 

inducing complete cell death at reported patient serum concentrations. This may explain 
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contradictions in the literature as such a large range of concentrations were used between 

investigators.  

It is important to note at this point the concentrations chosen in our studies. While plasma 

concentrations can vary greatly in patients due to a variety of factors such as health, 

individuality, and drug regimens, mean plasma concentrations are given in a number of clinical 

investigations. Of particular importance is what is deemed effective plasma concentrations of 

each HIV PI, as often the plasma concentration is 10 times higher than the mononuclear 

intracellular concentrations (291). For LOPV/RITV, the current published data states an average 

mean concentration of 6 µg/mL, and for LOPV a peak concentration at about 12.5 µg/mL, for 

those on LOPV:RITV 800/100 mg once a day or 400/100 two dimes a day (292, 293). Given the 

molecular weight, this translates to around 10 µM for RITV and 25 µM for LOPV. Other HIV 

PIs also do not differ much in clinical plasma concentrations compared to those treatments we 

show here as physiological (ex. IDV is 15 µg/mL which is almost 25 µM (294)). 

 For our studies, another important factor to consider is the actual accumulation of HIV 

PIs in non-target cells (i.e. hepatocytes and adipocytes). For Chapter 5, we are confident of the 

concentrations used as HIV PIs are susceptible to first-pass metabolism, and therefore 

concentrations experienced by hepatocytes is as high, if not higher, than that measured in patient 

serum. In addition, we have already shown HIV PIs to accumulate intracellularly in hepatocytes 

(49). 

 In terms of adipose tissue, it is key to realize that HIV PIs are highly lipophilic, and can 

accumulate in AT by passive diffusion and physical dissolution in the neutral fats (295). 

However, limited quantitative studies have confirmed the actual concentration of PIs in AT 

versus serum levels in patients. Others have shown HIV PIs to accumulate intracellularly in 
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cultered mouse and human adipocytes (244, 290, 296), and we have preliminary data suggesting 

the same in our cellular model. Although numerical concentration of HIV PIs in AT is not well 

published, we believe plasma concentration is highly representative given the above data, the 

accumulation by diffusion, and knowledge that AT is a well vascularized organ. 

 Therefore, when analyzing results from our investigations, and those in the literature, the 

clinically relevant concentrations must be considered. We are now confident of the results shown 

in Chapter 3 due to these above careful considerations, numerous repeats, and different assays 

used to analyze HIV PI-alteration of adipogenesis. Of particular significance is the clarification 

we found of RITV's effects on adipogenesis. We have found with Oil Red O staining, as well as 

analysis of LD size and numbers by MATLAB, that there is no increase of lipid accumulations 

compared to control at physiological concentrations of RITV (6.25 µM), while accumulations 

occur at higher concentrations. This may help explain both the contradictions in the literature, as 

well as the reason LOPV plus RITV combinations inhibit differentiation by 12.5-25 µM. 

  At the same time of these clarifications, we began investigating one cellular pathway 

involved in lipid metabolism, ER stress. In adipocytes, ER homeostasis is essential in LD droplet 

formations and lipolysis (see Chapter I VI A 3b). We therefore hypothesized that HIV PIs induce 

ER stress upstream of adipogenesis alterations in adipocytes.  

The unfolded protein response (UPR) is the signaling pathway induced at times of ER 

stress activation. In the beginning figures of Chapter 3, we show LOPV and RITV, as well as the 

clinically relevant combination LOPV/RITV (4/1), time and dose-dependently increased the 

UPR transcription factors ATF-4 and CHOP. We have also found that HIV PIs which do not 

induce the UPR (AMPV and DRV) have minimal metabolic side effects in the clinical. This 
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correlation encouraged the remainder of our studies as the UPR may be a potential therapeutic 

target. 

During this time, another group also found LOPV to induce ER stress in a human 

adipocyte cell line (SGBS) (54). Their investigations were able to correlate LOPV-induced ER 

stress and insulin signaling, but were unable to find a direct connection. While their results were 

only correlative and not involved in lipid metabolism, their findings are supportive of our 

studies. In addition, others have found the ability of ER stress activation to lead to inhibition of 

adipogenesis (189). This has been proposed to occur through CHOP.  

CHOP is a C/EBP-homologous protein (hence its name) and can therefore dimerize with 

C/EBPs. C/EBPβ is essential in the induction of adipogenesis, while C/EBPα is involved in 

maintenance of differentiation (Background VI A 2a). When CHOP dimerizes with the C/EBPs, 

it inhibits their homodimerization necessary for binding to target promoters (297, 298). This 

ultimately leads to inhibition of differentiation (76).  

We found that lack of CHOP abrogates HIV PI-induced alterations in adipogenesis. 

While in the literature many have published the ability of HIV PIs to alter adipogenesis 

(although with contradictions therein), we are the first to propose a substantial mechanism by 

which this may occur. We propose that an increase of ER stress can lead to upregulation of 

CHOP through transcription factor ATF-4, resulting in inhibition of differentiation by LOPV and 

LOPV/RITV. 

However, the ability of RITV to induce lipid accumulations at higher concentrations 

grabbed our curiosity. RITV at 6.25 µM did increase CHOP mRNA and protein levels in 

differentiated adipocytes (Figures 10, 11). However, by 12.5 µM, this increase was not as great 

as that induced by LOPV, especially at the protein level. We hypothesize that although these 
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differences are slight, they may be enough to cause differential results in adipogenesis 

progression. This would especially be the case if CHOP is competitively binding to C/EBPs 

during differentiation. Given that CHOP
-/-

 also abrogated RITV accumulations supports that both 

LOPV and RITV alterations in adipogenesis occur through the CHOP pathway. 

We also serendipitously came upon another potential mechanism to explain the 

differential affects of LOPV and RITV. This occurred when we were testing whether HIV PIs 

could increase IL-6 mRNA stability through HuR binding in adipocytes as they do in 

macrophages (232). While our results were non-conclusive in this regard, we surprisingly found 

that HuR and CUGBP-1 (CUGn triplet repeat RNA-binding protein) bound to PPARγ mRNA, 

and this was significantly increased with RITV, but not LOPV, treatment. 

AU-rich elements (AREs) in the 3' untranslated region (3'UTR) allow for rapid decay of 

short-lived mRNAs. RNA binding proteins such as HuR increase mRNA stability via binding to 

these regions (299, 300). CUGBP-1 binds to CUG oligonucleotides, leading to alternative 

splicing and alteration in translation (301, 302).  

 Both HuR and CUGBP-1 have previously been reported to play a role in adipogenesis 

through postranscriptional regulation of C/EBPβ. CUGBP-1 was the first shown to bind to 

C/EBPβ (301). This binding resulted in differential translation of the C/EBPβ transcript, leading 

to production of short dominant-negative isoforms which bind and inhibit action of full C/EBPβ 

proteins. In adipocytes, this leads to inhibition of differentiation (303). More recently, HuR has 

also been demonstrated to complex with C/EBPβ. Rather than increasing C/EBPβ mRNA 

stability, HuR binding slowed translocation to the cytosol, also contributing to a delay in 

differentiation (304, 305). Therefore, both of these mRNA proteins may negatively regulate 

adipogenesis.  
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While this work is intriguing, we are the first to demonstrate a potential role of these 

binding proteins on PPARγ postranscriptional regulation. We have identified putative binding 

sites for both proteins, and demonstrated binding through an in vitro pulldown. Importantly, 

RITV treatment in 3T3-L1s increased both HuR and CUGBP-1 binding, with more significant 

binding found at the 3'UTR.   

 It remains to be asked why so many who study this essential transcription factor failed to 

note such a regulatory mechanism of its action. In fact, we believe the substantial induction of 

binding with RITV treatment allowed us to come upon this finding. In addition, another inquiry 

remains as to why both proteins bind to the 3'UTR. Intuitively, this result seems contradictory as 

HuR is thought to stabilize mRNA transcripts while CUGBP-1 destabilizes. In reality, these 

distinct classifications may not hold, as we have discussed above HuR binding actually slows 

C/EBPβ shuttling. In addition, CUGBP-1 may increase translation of some transcripts (306). 

Therefore, there is potential that these proteins are not having opposite effects when binding to 

PPARγ.  

To boot, others in our laboratory have noticed competitive binding of HuR and CUGBP-1 

on IL-6 mRNA in macrophages (in progress). Therefore, there is the possibility that this 

competition is also occurring in our model. The regulation of mRNA binding proteins and their 

subsequent actions is currently not well defined, and continuously investigated due to potential 

roles they play in many cellular pathways and correlated diseases. While this field is growing, 

we hope to gain a greater prospective of how, and why, HuR and CUGBP-1 bind to PPARγ 

mRNA. 

 Although one HIV PI induced binding significantly and the other did not, both LOPV and 

RITV significantly inhibited PPARγ promoter activity in our assay. This result is supportive of 
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current literature (243, 258, 307, 308). In addition, our findings were not dose dependent, which 

is supportive of other results that HIV PIs do not directly bind to the PPARγ promoter (245). 

While it is clear HIV PIs inhibit PPARγ promoter activity, some have reported no change in 

mRNA or protein levels of PPARγ with RITV treatments (193, 241), perhaps explained by 

postranscriptional modifications. 

There are multiple lines of evidence that ER stress can lead to a decrease in PPARγ (309-

312). What is not known is which component of the UPR is leading to this inhibition, or if 

another factor is contributing to the phenomenon. SREBP-1c is a lipogenic transcription factor 

located in the inactive form at the ER membrane, and can be released at times of ER stress 

(Background IV B2). Others have shown that HIV PIs alter the nuclear lamin A/C maturation 

(239, 313, 314), essential for normal nuclear penetration of SREBP-1 (315, 316). We have 

previously shown SREBPs to be upregulated at times of HIV PI-induced ER stress (49), and 

believe the same occurs in AT (Figure 27). However, in adipocytes SREBP-1c may not be 

adequately translocated into the nucleus at times of HIV PI treatments, failing to stimulate 

PPARγ. At the same time, HIV PIs may be increasing the mRNA stability of what transcript is 

produced, allowing for a quick rebound of levels. Future studies need to be completed to analyze 

the timing of all these alterations, as well as the extent PPARγ protein levels are changed in the 

cytosol and nucleus of cells treated with HIV PIs.  

  The centrality of ER stress induction and HIV PI alterations in adipogenesis is apparent 

in our work. We also consider our MATLAB data directly correlated to ER stress induction. 

CTP:phosphocholinecytidylyltransferase (CCT), the rate limiting enzyme for 

phosphatidylcholine (PtdCho) synthesis, is enriched in the rough ER (Background VI 3 b). Lipid 

droplet (LD) fusion can occur at times of ER stress when there is a decrease of CCT (175). In 
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Figure 19, RITV significantly decreased LD number while increasing LD diameter. This data 

suggests LD fusion. We hypothesize the induction of ER stress is the cause of this specific 

phenomenon, as the ER and LD organelles are so closely intertwined (66, 69, 173, 174). 

However, more intricate studies are needed to elucidate this phenomenon. These investigations 

will not only aid in understanding how HIV PIs act in adipocytes, but also allow deeper 

clarification of LD physiology. 

HIV PIs in Adipocytes - Autophagy Induction 

 In order to further investigate HIV PI-induced lipid metabolism dysregulation in 

adipocytes, we turned to autophagy. We first began these studies when all the pathologies 

induced by HIV PIs could not be thoroughly explained through UPR induction. For instance, 

although we can visualize cell death in adipocytes chronically treated with HIV PIs, our 

apoptosis analysis was not as significant as expected (Figure 14). In addition, knockout of CHOP 

did not result in complete inhibition of LOPV and RITV alterations (Figures 26, 27). 

 At the same time of our ER stress studies, the role of autophagy in lipid metabolism was 

emerging in the literature. Autophagy has previously been shown to induce cell death and alter 

lipid metabolism (Background V A and VI D). In adipocytes, the significance of autophagy in 

physiology and pathology seems to be complex and only beginning to be understood. Recent 

work has demonstrated that knockdown of this pathway leads to inhibition of differentiation in 

vitro, and lack of white adipose tissue growth in vivo (203, 263). However, the control and 

intricacies of autophagy in fully differentiated adipocytes is not very well known. This is 

partially attributable to the essentiality of autophagy in differentiation, and therefore difficulty in 

knocking-down this pathway in mature cells and tissues through gene manipulation.  
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A few investigators have recently shown HIV PIs SQV, NFV, and an IDV analog induce 

autophagy in cancer cells (233, 234, 265). As seen in Chapter 4, we were able to demonstrate 

that HIV PIs ccan induce autophagy in metabolically important cells. Using multiple methods, 

we show that both RITV and LOPV induce autophagosome accumulations in both non-

differentiated and differentiated adipocytes. In contrast, DRV, a second generation HIV PI which 

is not known to induce lipid metabolism alterations in the clinic, did not significantly increase 

either the UPR or autophagy (Figure 31).  

 Autophagic flux is just as important as autophagosome formation. If autophagosomes fail 

to fuse with, or be processed in, lysosomes, an accumulation of autophagosomes will occur and 

present as an induction of autophagy. There is often criticism when investigators fail to probe for 

alterations in autophagic flux, especially in the emerging field studying autophagy in 

adipogenesis (280). LC3B has been demonstrated to localize at LDs (201, 317). Therefore, 

autophagosomes may not only be engulfing LDs when recycling lipids, but LDs may also fuse 

directly to these vesicles. If flux is inhibited, there would be a lack of full lipid recycling. This 

would obviously lead to pathology on its own. 

We found no evidence of inhibition of autophagosome maturation in our model. When 

analyzing our EM images, we visualized both early and late autophagosomes, as well as apparent 

autolysosomes (single membraned with highly degraded substances). We also examined for 

successful cleavage of GFP-LC3B. LC3B-II is already extensively shown to be localized to both 

the inner and outer membranes of autophagosomes (318, 319). Upon autophagosome-lysosome 

fusion, inner membrane LC3B is degraded with the cytosolic components while the outer 

membrane LC3B is removed by Atg4 through delipidation to be recycled (320). This same 

process will occur with the GFP-LC3B construct, but as GFP is much more resistant to 
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proteases, it is released into the cytosol at LC3B cleavage (281, 282, 321). Impediment of GFP 

cytosolic accumulation would suggest inhibition of autophagolysosome maturation, which does 

not occur in our assay (Figure 34).  

 Another flux assay we used was p62 degradation. The nuclear membrane protein p62 is 

used extensively in autophagy assays. p62 was found to have a LIR, and can serve as a linking 

protein between LC3B and ubiquitinated substrates (267, 268, 322). It has been proposed to be 

specifically degraded through autophagy, and therefore p62 protein levels should inversely 

correlate with autophagic flux (267, 271, 272). However, recent research has shown that there 

exist other sub-populations of p62 beyond those associated with autophagosomes (273). In 

addition, a recent publication has demonstrated that p62 associates with the 26S proteasome, and 

inhibition of proteasome activity leads to p62 accumulation (274). 

 HIV PIs have already extensively been shown to inhibit proteasome activity (223, 323-

325). In addition, this inhibition is dose-dependent, with HIV PIs having moderate activity when 

compared to other pharmacological agents. HIV PI proteasome inhibition has been proposed to 

be the inducer of ER stress, as it will cause an inhibition of nascent protein degradation (223). In 

this particular study cited, while ER stress activation and proteasome inhibition occurred in 

HepG2 and 3T3-L1 cells with HIV PI treatments, it was not elucidated which activity occurred 

first. As we have not conducted sufficient studies to determine if direct inhibition of proteasome 

activity is the result of UPR activation, and the downstream affects shown, we cannot refute this 

as being a possible underlying mechanism. However, our previous data suggests that in fact 

accumulation of cholesterol in the ER membrane is the underlying issue, which would lead to 

inhibition of the Ca
2+ 

ATP-pump, and result in depletion of ER Ca
2+ 

stores (Figure 13 and (51)).  
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 We hypothesize that the accumulation of p62 protein seen with the higher concentrations 

of HIV PIs in our assays is due to inhibition of proteasome activity, not inhibition of 

autophagolysosome activity (Figures 33, 47). While we are currently confident of our results 

demonstrating HIV PIs are inducing autophagy with no affect on flux, further experiments will 

be conducted in support of our work. One such study, of which we show in Chapter 5, is the use 

of lysosomal inhibitors to demonstrate accumulation of LC3BII is due to activation of autophagy 

and not inhibition of LC3BII degradation in the autophagolysosome (281).  

An even better determinant is degradation of long-lived proteins. This classical method 

utilizes isotope-labeling of long-lived proteins. The output result may be the most precise 

measurement of autophagolysosome activity (326, 327). However, degradation of many long-

lived proteins occurs through the proteasome. Therefore, to clarify the degradation pathway, 

inclusion of autophagy inhibitors (such as 3-methyladenine) is necessary. This leads to two 

pitfalls in the study. One, some inhibitors such as 3-methyladenine must be used at very high 

concentrations to fully inhibit autophagy. Another, HIV PI-inhibition of proteasomes may also 

affect the output of this assay. As such, positive and negative controls are even more essential in 

our particular investigations and will be considered in future experiments. 

While flux is not apparently altered, LC3B protein increase may not be attributable only 

to increased autophagy. In contrast, we believe some of this protein is also aiding in LD fusions. 

LC3B has been demonstrated to localize at LDs (201, 317), and also be involved in lipososomal 

fusion in drosophili (328). In a recent study of hepatic stellate cells, it was shown that platelet-

derived growth factor increased LC3B accumulation to LDs (317). While we are investigating 

different cell types with different drug treatments, this result demonstrates the capacity of an 

extracellular substance inducing differential localization of LC3B.  
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With the above studies, it can be hypothesized that HIV PIs induce an increase of LC3B 

protein levels, some of which will accumulate at adipocyte LDs (in a non-elucidated manner). 

With LC3B now shown to have tethering capacity, this protein may aid in the fusion of LDs, as 

well as direct fusion to autophagosomes. In addition, this increase of LC3B will allow more 

substrate for autophagosome production, a basis for the significant results shown in Chapter 4. 

Indeed, we have shown how HIV PIs can increase LC3B protein through the activation of ER 

stress.  

We first investigated an HIV PI-induced UPR and autophagy link with the transcription 

factor CHOP, as we had seen CHOP
-/-

 to abrogate HIV PI alterations in adipogenesis (Chapter 

3). While knockdown of CHOP resulted in a decrease of LC3B protein levels in 3T3-L1s, CHOP 

overexpression did not affect LC3B in either non-treated or HIV PI treated 3T3-L1s (Figure 35). 

This could be due to the methods we used (GFP-tagged CHOP may impede action of CHOP) 

and/or an already saturated system. The next step will be to reintroduce CHOP into a CHOP
-/- 

adipocyte and test LC3B response. In addition, we are continuing our experiments focused on 

HIV PI treated CHOP knockdown 3T3-L1s. Our initial results are very similar to our inhibition 

of adipogenesis assay, demonstrating the central role CHOP plays in HIV PI-induced 

dysregulation of lipid metabolism.   

Nonetheless, we also wanted to determine if this connection also occurred upstream of 

CHOP. As previously mentioned, others have demonstrated a UPR-PERK-autophagy connection 

(120, 130, 269). ATF-4, the transcription factor activated through this pathway, is a direct 

activator of CHOP (329, 330). In addition, RITV, a dose-dependent activator of autophagy 

(shown by EM to even be a more significant than LOPV) activated ATF-4 more so than CHOP 

in our models. As shown, ATF-4 knockout abrogates LOPV and LOPV/RITV upregulation of 
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LC3B protein (Figure 36). These findings are most intriguing and well connected to above 

discussions. Please see HIV PI-Induced UPR and Induction of Autophagy below for a further 

discussion of this matter. 

HIV PIs in Hepatocytes 

 In contrast to adipocytes, extensive work on HIV PI-induced metabolic side effects has 

focused in the liver and hepatocytes. The reasons are simple - the liver is central in many 

metabolic diseases, is one of the first organs HIV PIs come into contact, and is the major organ 

responsible for HIV PI metabolism. Nonetheless, it was not until most recent years that specific 

mechanisms underlying HIV PI-induced side effects in this organ were proposed. 

 Of most interest that formulated was the induction of ER stress. This mechanism seemed 

lucrative as it could so easily explain how one drug had so many deleterious cellular affects such 

as the inflammatory cascade, insulin resistance, and lipid metabolism dysregulation. In addition, 

more recent clinical findings demonstrate that many patients on HIV PIs have NAFLD, which 

ER stress has also been proposed to underlie (213, 214). Our laboratory has already extensively 

demonstrated that HIV PIs lead to the activation of the UPR in hepatocytes, and subsequent 

dysregulation of lipid metabolic-essential transcription factors (49, 50, 222).  

 More recently, autophagy is now understood to be a major player in lipid metabolism in 

hepatocytes, and may also underlie NAFLD/NASH (205, 225, 284). As we had investigated, and 

found, HIV PIs to induce autophagy in adipocytes, we were also interested if autophagy 

dysregulation was occurring in hepatocytes. And as shown in Chapter 5, this is indeed the case 

with LOPV/RITV 4:1. 

 We also took these findings a step further. Raltegravir, an integrase inhibitor, was found 

by our laboratory to not induce the UPR or lipid accumulations in hepatocytes as do HIV PIs. 
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Importantly, addition of raltegravir with LOPV/RITV treatment actually inhibited their induction 

of lipid accumulations (222). We hypothesized that this phenomenon could be explained through 

raltegravir-inhibition of LOPV/RITV-induced autophagy. 

 Indeed, as shown in Figures 39-42, raltegravir inhibits LOPV/RITV activation of 

autophagy. Excited by these findings, we moved forward to elucidate the mechanism. Significant 

evidence came by utilization of our previously acquired CHOP
-/- 

model. Here, we found 

significant abrogation of raltegravir-inhibition of LOPV/RITV-induced LC3B conversion 

(Figure 43). However, in vivo raltegravir did not alter LOPV/RITV increased LC3BII:I, but only 

inhibited the total LC3B protein increase (Figures 44, 45). 

 We do not believe this result is a lack of correlation between our in vitro and in vivo 

assays. Isolation and separation of protein is in fact a crude method of analyzing in vivo 

processes, especially in tissue with high proteolytic enzymes such as the liver. Although all 

experiments were handled with as much care as possible, we cannot disprove that some of these 

small proteins were not degraded before analysis. In addition, the liver is composed of more than 

just hepatocytes, but also macrophages and endothelial cells. We have not analyzed if HIV PIs 

induce autophagy in either of these other cell types, and therefore cannot exclude that their 

alterations are not also affecting our Western results. 

Upon further investigation of this data, we believe our in vitro results are translatable. In 

the wild type mice fed a normal diet, the „n‟ may not be large enough. Additionally, in the high 

fat diet experiment, lack of raltegravir activation of LC3B is significantly abrogated with loss of 

CHOP. And although not significant with this „n,‟ there is a trend loss in raltegravir inhibition of 

LOPV/RITV-induced LC3B activation. Nonetheless, more extensive investigations should be 

undertaken to definitively ascertain the in vivo ability of raltegravir inhibition in LOPV/RITV-
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induced autophagy. One example would be the use of GFP-LC3B transgenic mice (281). This 

model allows direct monitoring of autophagosome formations by sectioning tissue and analyzing 

with fluorescent microscopy, and may aid greatly in our investigations.  

Nevertheless, our in vivo results highly correlate to our results from Chapter 4. In fact, 

when CHOP is downregulated in 3T3-L1s, there was a total decrease of LC3B protein, not a 

decrease of LC3BII:I. Going farther upstream lead to this same finding. In fact, it has been 

proposed the PERK pathway connects ER stress to autophagy through ATF-4 transcriptional 

regulation of LC3B.  

HIV PI-Induced UPR and Induction of Autophagy 

 Hypoxia is one known inducer of ER stress as protein folding is oxygen dependent (331). 

Autophagy induction has been shown to occur at times of oxygen depletion (332, 333), with a 

direct connection to ER stress proposed by Rzymski et. al in 2010 (130). In hypoxic conditions, 

this group found an upregulation of ATF-4 lead to a subsequent increase in LC3B protein. By 

using a siRNA targeted to ATF-4, they saw a decrease in total LC3B protein levels, as we have 

also shown in our model. Even more, they were able to define an ATF-4 binding site in the 

5'UTR of the LC3B promoter, and demonstrated strong and specific binding at times of hypoxia.   

 ER stress can be induced by multiple mechanisms. Other investigators have proposed 

UPR-autophagy links during such differential alterations such as inhibition of nascent protein 

degradation (131), oxidative stress (334), and radiation (129). Our studies investigate only one 

mechanism of ER stress activation, but have many similarities to others who show a PERK-

autophagy link. Particularly, HIV PIs significantly upregulate both ATF-4 and CHOP in all cell 

models we study, and knockdown of ATF-4 leads to a decrease in total LC3B protein levels. 
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 Many investigators are under the impression that conversion of LC3B is the key 

necessary for increased autophagosome formation. While we do not refute the necessity of this, it 

should also follow that an upregulation of LC3B will ultimately lead to more of the substrate 

essential in autophagosome formation. In fact, our findings are highly supported by Rzymski's 

results that ATF-4 may be able to directly upregulate LC3B protein leading to autophagosome 

increase (131, 335).  

 Our results demonstrate that CHOP also plays a major role in HIV PI-induced ER stress 

and autophagy induction. Knockdown of CHOP caused a significant decrease in LC3B within 

adipocytes, and raltegravir inhibition of LOPV/RITV LC3B induction was dependent on CHOP 

in hepatocytes. These results are novel, and demonstrate an exclusive relationship downstream 

CHOP has on LC3B regulation.  

 We have not yet defined the mechanism underlying CHOP‟s ability to alter LC3B protein 

levels. Rouschoup et. al have recently shown CHOP to bind to the Atg5 promoter (275). Atg5 is 

an E3-like ligase essential in LC3B lipidation, and therefore directly controls LC3BII:I levels. 

However, we have no current evidence this is occurring, and some of our results refute this 

hypothesis. Indeed, CHOP
-/-

 primary hepatocytes resulted in increased LOPV/RITV-induced 

LC3B conversion relative to wild type control (Figure 43). More intricate assays are thus needed 

to determine if CHOP does indeed play a transcriptional role in autophagy regulation. This may 

be via Atg5, or one of the other 30+ proteins involved in autophagy.  

Targeting HIV PI-Induced Metabolic Side Effects 

 While all our findings above are intriguing and give insight into a multitude of cellular 

pathways and regulations, the ultimate goal is unearthing a potential target to inhibit HIV PI-
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induced cellular lipid metabolism dysregulation. Unfortunately, current approaches in the clinic 

do not target the issue at hand, but rather treat the symptoms.  

For instance, when a physician notes an alteration in lipidemia, the first conclusion is 

often a change of diet with a lipid lowering agent. This may not be enough to combat cellular 

alterations induced by a chronic drug therapy. In addition, switching to alternative HAART 

regimens may not be beneficial to the patient due to viral load and mutations, physical condition 

of the patient such as ability to clear drug, and other induced side effects. Therefore, an optimal 

approach would be inhibition of HIV PI cellular perturbations that lead to these chronic clinical 

effects. 

 Some have attempted addition of direct interventions during HIV PI treatment. One such 

example is addition of thiazolidinediones, direct stimulators of PPARγ. These drugs are often 

used in the treatment of insulin resistance, but have also been shown to have great potential in 

treatment of genetic lipodystrophies (336, 337). However, addition of rosiglitazone did not 

improve lipid profile in patients on HIV PI-therapy (338-340). Probing into the molecular effects 

of HIV PIs gives the reasons for such a failure – as shown in our studies.  

Others have attempted to add homeopathic agents into the treatment and test if this could 

alleviate some HIV PI side effects. There has not been any success in this avenue, either. 

Importantly, clinical investigators must be cautious in such studies. Although many herbs have 

minimal side effects, they may disrupt the metabolism of drugs, affecting the concentration and 

action of essential therapies such as HIV PIs. One well known example is St. John‟s wort, which 

inhibits cytochrome P450 3A4, the same enzyme that metabolizes HIV PIs. 

While our laboratory was initially investigating such alternative therapies, focusing on 

the Chinese herbal medicine Berberine (191), the results we show here may ultimately change  
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Figure 49: HIV PI-Induced ER stress activates autophagy and dysregulates cellular lipid 

metabolism. Our current model based on the findings presented in this dissertation. 
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focus to agents already within the HAART class. Specifically, we show raltegravir to inhibit 

LOPV/RITV-induced lipid accumulations in hepatocytes. 

 In the clinic, there is currently no data suggesting an unfavorable lipid profile in patients 

on raltegravir therapy (341, 342). In fact, some propose a switch from HIV PIs to raltegravir 

would be beneficial. A few clinical trials, such as the SWITCH study, have investigated this, but 

it is currently not recommended. While the results demonstrate an improvement of lipid profile, 

it is at the cost of worsening viral load (343), so much so that one study had to terminate early 

(344). It is apparent, however, that raltegravir can have a positive impact on HIV PI-induced 

lipidemia. 

 Our investigations demonstrate that raltegravir has a direct affect on these lipid metabolic 

alterations at the cellular level. However, our current studies with raltegravir are only completed 

in hepatocytes. While this is a key cell type involved in lipidemia, it must be determined if this 

phenomenon also occurs in adipocytes. One recent study has shown raltegravir to have no effects 

on adipogenesis of 3T3-L1s (345). This suggests to us that raltegravir may have similar 

beneficial results in adipocytes, and we will therefore continue our studies in this direction.   

Conclusion 

 Chronic side effects induced by HIV PIs have placed a major pitfall on these otherwise 

beneficial agents. Elucidating HIV PI cellular metabolism alterations can lead to better therapies. 

We have shown that HIV PIs induce two major pathways involved in cellular lipid metabolism, 

ER stress and autophagy, which are not mutually exclusive. We propose raltegravir addition in 

HAART will relieve this activation, inhibiting HIV PI-induced lipid metabolism dysregulation. 

Future investigations should focus on the metabolic benefits of such a therapy. 

 



www.manaraa.com

154 

 

References Cited 

 

1. WHO, U. (2010) Global Summary of the AIDS Epidemic. 

2. WHO, U. (2009) AIDS Epidemic Update. 

3. Arien, K. K., Vanham, G., and Arts, E. J. (2007) Is HIV-1 evolving to a less virulent 

form in humans?, Nat Rev Microbiol 5, 141-151. 

4. Fauci, A. S. (2003) HIV and AIDS: 20 years of science, Nat Med 9, 839-843. 

5. Navia, M. A., Fitzgerald, P. M., McKeever, B. M., Leu, C. T., Heimbach, J. C., Herber, 

W. K., Sigal, I. S., Darke, P. L., and Springer, J. P. (1989) Three-dimensional structure of 

aspartyl protease from human immunodeficiency virus HIV-1, Nature 337, 615-620. 

6. Kovalevsky, A. Y., Ghosh, A. K., and Weber, I. T. (2008) Solution kinetics 

measurements suggest HIV-1 protease has two binding sites for darunavir and 

amprenavir, J Med Chem 51, 6599-6603. 

7. Mastrolorenzo, A., Rusconi, S., Scozzafava, A., Barbaro, G., and Supuran, C. T. (2007) 

Inhibitors of HIV-1 protease: current state of the art 10 years after their introduction. 

From antiretroviral drugs to antifungal, antibacterial and antitumor agents based on 

aspartic protease inhibitors, Curr Med Chem 14, 2734-2748. 

8. Brik, A., and Wong, C. H. (2003) HIV-1 protease: mechanism and drug discovery, Org 

Biomol Chem 1, 5-14. 

9. Flint, O. P., Noor, M. A., Hruz, P. W., Hylemon, P. B., Yarasheski, K., Kotler, D. P., 

Parker, R. A., and Bellamine, A. (2009) The role of protease inhibitors in the 

pathogenesis of HIV-associated lipodystrophy: cellular mechanisms and clinical 

implications, Toxicol Pathol 37, 65-77. 



www.manaraa.com

155 

 

10. Paccou, J., Viget, N., Legrout-Gerot, I., Yazdanpanah, Y., and Cortet, B. (2009) Bone 

loss in patients with HIV infection, Joint Bone Spine 76, 637-641. 

11. Ofotokun, I., and Weitzmann, M. N. (2010) HIV-1 infection and antiretroviral therapies: 

risk factors for osteoporosis and bone fracture, Curr Opin Endocrinol Diabetes Obes 17, 

523-529. 

12. Gibellini, D., De Crignis, E., Ponti, C., Borderi, M., Clo, A., Miserocchi, A., Viale, P., 

and Carla Re, M. (2010) HIV-1 Tat protein enhances RANKL/M-CSF-mediated 

osteoclast differentiation, Biochem Biophys Res Commun 401, 429-434. 

13. Mallon, P. W., Miller, J., Cooper, D. A., and Carr, A. (2003) Prospective evaluation of 

the effects of antiretroviral therapy on body composition in HIV-1-infected men starting 

therapy, AIDS (London, England) 17, 971-979. 

14. Martinez, E., Mocroft, A., Garcia-Viejo, M. A., Perez-Cuevas, J. B., Blanco, J. L., 

Mallolas, J., Bianchi, L., Conget, I., Blanch, J., Phillips, A., and Gatell, J. M. (2001) Risk 

of lipodystrophy in HIV-1-infected patients treated with protease inhibitors: a prospective 

cohort study, Lancet 357, 592-598. 

15. Carr, A., Miller, J., Law, M., and Cooper, D. A. (2000) A syndrome of lipoatrophy, lactic 

acidaemia and liver dysfunction associated with HIV nucleoside analogue therapy: 

contribution to protease inhibitor-related lipodystrophy syndrome, AIDS (London, 

England) 14, F25-32. 

16. Barbaro, G. (2007) Visceral fat as target of highly active antiretroviral therapy-associated 

metabolic syndrome, Current pharmaceutical design 13, 2208-2213. 



www.manaraa.com

156 

 

17. Lee, H., Hanes, J., and Johnson, K. A. (2003) Toxicity of nucleoside analogues used to 

treat AIDS and the selectivity of the mitochondrial DNA polymerase, Biochemistry 42, 

14711-14719. 

18. Mallon, P. W. (2007) Pathogenesis of lipodystrophy and lipid abnormalities in patients 

taking antiretroviral therapy, AIDS reviews 9, 3-15. 

19. Caron-Debarle, M., Boccara, F., Lagathu, C., Antoine, B., Cervera, P., Bastard, J. P., 

Vigouroux, C., and Capeau, J. (2010) Adipose Tissue as a Target of HIV-1 Antiretroviral 

Drugs. Potential Consequences on Metabolic Regulations, Current pharmaceutical 

design. 

20. Friis-Moller, N., Weber, R., Reiss, P., Thiebaut, R., Kirk, O., d'Arminio Monforte, A., 

Pradier, C., Morfeldt, L., Mateu, S., Law, M., El-Sadr, W., De Wit, S., Sabin, C. A., 

Phillips, A. N., Lundgren, J. D., and group, D. A. D. s. (2003) Cardiovascular disease risk 

factors in HIV patients--association with antiretroviral therapy. Results from the DAD 

study, AIDS (London, England) 17, 1179-1193. 

21. Calza, L., Manfredi, R., and Chiodo, F. (2004) Dyslipidaemia associated with 

antiretroviral therapy in HIV-infected patients, The Journal of antimicrobial 

chemotherapy 53, 10-14. 

22. Group, D. A. D. S., Friis-Moller, N., Reiss, P., Sabin, C. A., Weber, R., Monforte, A., El-

Sadr, W., Thiebaut, R., De Wit, S., Kirk, O., Fontas, E., Law, M. G., Phillips, A., and 

Lundgren, J. D. (2007) Class of antiretroviral drugs and the risk of myocardial infarction, 

The New England journal of medicine 356, 1723-1735. 

23. Kaplan, R. C., Kingsley, L. A., Sharrett, A. R., Li, X., Lazar, J., Tien, P. C., Mack, W. J., 

Cohen, M. H., Jacobson, L., and Gange, S. J. (2007) Ten-year predicted coronary heart 



www.manaraa.com

157 

 

disease risk in HIV-infected men and women, Clinical infectious diseases : an official 

publication of the Infectious Diseases Society of America 45, 1074-1081. 

24. Grundy, S. M., Cleeman, J. I., Daniels, S. R., Donato, K. A., Eckel, R. H., Franklin, B. 

A., Gordon, D. J., Krauss, R. M., Savage, P. J., Smith, S. C., Jr., Spertus, J. A., and Costa, 

F. (2006) Diagnosis and management of the metabolic syndrome: an American Heart 

Association/National Heart, Lung, and Blood Institute scientific statement, Current 

opinion in cardiology 21, 1-6. 

25. Martinez, E., Milinkovic, A., Buira, E., de Lazzari, E., Leon, A., Larrousse, M., Lonca, 

M., Laguno, M., Blanco, J. L., Mallolas, J., Garcia, F., Miro, J. M., and Gatell, J. M. 

(2007) Incidence and causes of death in HIV-infected persons receiving highly active 

antiretroviral therapy compared with estimates for the general population of similar age 

and from the same geographical area, HIV Med 8, 251-258. 

26. Floris-Moore, M., Howard, A. A., Lo, Y., Arnsten, J. H., Santoro, N., and Schoenbaum, 

E. E. (2006) Increased serum lipids are associated with higher CD4 lymphocyte count in 

HIV-infected women, HIV Med 7, 421-430. 

27. Pere, D., Ignacio, S. L., Ramon, T., Fernando, L., Alberto, T., Pompeyo, V., Juan, G., G, 

M. J., Paloma, G., Antonio, V., Jaime, C., Esteban, R., Bernardino, R., GA, M. L., 

Trinitario, S., Ferran, T., Juan Ramon, L., and Myriam, G. (2008) Dyslipidemia and 

cardiovascular disease risk factor management in HIV-1-infected subjects treated with 

HAART in the Spanish VACH cohort, Open AIDS J 2, 26-38. 

28. Periard, D., Telenti, A., Sudre, P., Cheseaux, J. J., Halfon, P., Reymond, M. J., 

Marcovina, S. M., Glauser, M. P., Nicod, P., Darioli, R., and Mooser, V. (1999) 



www.manaraa.com

158 

 

Atherogenic dyslipidemia in HIV-infected individuals treated with protease inhibitors. 

The Swiss HIV Cohort Study, Circulation 100, 700-705. 

29. Tsiodras, S., Mantzoros, C., Hammer, S., and Samore, M. (2000) Effects of protease 

inhibitors on hyperglycemia, hyperlipidemia, and lipodystrophy: a 5-year cohort study, 

Arch Intern Med 160, 2050-2056. 

30. Calza, L., Manfredi, R., Farneti, B., and Chiodo, F. (2003) Incidence of hyperlipidaemia 

in a cohort of 212 HIV-infected patients receiving a protease inhibitor-based 

antiretroviral therapy, Int J Antimicrob Agents 22, 54-59. 

31. Carr, A., Samaras, K., Thorisdottir, A., Kaufmann, G. R., Chisholm, D. J., and Cooper, 

D. A. (1999) Diagnosis, prediction, and natural course of HIV-1 protease-inhibitor-

associated lipodystrophy, hyperlipidaemia, and diabetes mellitus: a cohort study, Lancet 

353, 2093-2099. 

32. Purnell, J. Q., Zambon, A., Knopp, R. H., Pizzuti, D. J., Achari, R., Leonard, J. M., 

Locke, C., and Brunzell, J. D. (2000) Effect of ritonavir on lipids and post-heparin lipase 

activities in normal subjects, Aids 14, 51-57. 

33. Garcia-Benayas, T., Blanco, F., de la Cruz, J. J., Senchordi, M. J., Gomez-Viera, J. M., 

Soriano, V., and Gonzalez-Lahoz, J. (2001) Role of nonnucleosides in the development 

of HAART-related lipid disturbances, J Acquir Immune Defic Syndr 28, 496-498. 

34. Barragan, P., Fisac, C., and Podzamczer, D. (2006) Switching strategies to improve lipid 

profile and morphologic changes, AIDS Rev 8, 191-203. 

35. Walli, R. K., Michl, G. M., Bogner, J. R., and Goebel, F. D. (2001) Improvement of 

HAART-associated insulin resistance and dyslipidemia after replacement of protease 

inhibitors with abacavir, Eur J Med Res 6, 413-421. 



www.manaraa.com

159 

 

36. Ruiz, L., Negredo, E., Domingo, P., Paredes, R., Francia, E., Balague, M., Gel, S., 

Bonjoch, A., Fumaz, C. R., Johnston, S., Romeu, J., Lange, J., and Clotet, B. (2001) 

Antiretroviral treatment simplification with nevirapine in protease inhibitor-experienced 

patients with hiv-associated lipodystrophy: 1-year prospective follow-up of a multicenter, 

randomized, controlled study, J Acquir Immune Defic Syndr 27, 229-236. 

37. Martinez, E., Arnaiz, J. A., Podzamczer, D., Dalmau, D., Ribera, E., Domingo, P., 

Knobel, H., Riera, M., Pedrol, E., Force, L., Llibre, J. M., Segura, F., Richart, C., Cortes, 

C., Javaloyas, M., Aranda, M., Cruceta, A., de Lazzari, E., and Gatell, J. M. (2003) 

Substitution of nevirapine, efavirenz, or abacavir for protease inhibitors in patients with 

human immunodeficiency virus infection, N Engl J Med 349, 1036-1046. 

38. Donnelly, K. L., Smith, C. I., Schwarzenberg, S. J., Jessurun, J., Boldt, M. D., and Parks, 

E. J. (2005) Sources of fatty acids stored in liver and secreted via lipoproteins in patients 

with nonalcoholic fatty liver disease, J Clin Invest 115, 1343-1351. 

39. Rector, R. S., Thyfault, J. P., Wei, Y., and Ibdah, J. A. (2008) Non-alcoholic fatty liver 

disease and the metabolic syndrome: an update, World J Gastroenterol 14, 185-192. 

40. Ingiliz, P., Valantin, M. A., Duvivier, C., Medja, F., Dominguez, S., Charlotte, F., 

Tubiana, R., Poynard, T., Katlama, C., Lombes, A., and Benhamou, Y. (2009) Liver 

damage underlying unexplained transaminase elevation in human immunodeficiency 

virus-1 mono-infected patients on antiretroviral therapy, Hepatology 49, 436-442. 

41. Lemoine, M., Barbu, V., Girard, P. M., Kim, M., Bastard, J. P., Wendum, D., Paye, F., 

Housset, C., Capeau, J., and Serfaty, L. (2006) Altered hepatic expression of SREBP-1 

and PPARgamma is associated with liver injury in insulin-resistant lipodystrophic HIV-

infected patients, Aids 20, 387-395. 



www.manaraa.com

160 

 

42. Akhtar, M. A., Mathieson, K., Arey, B., Post, J., Prevette, R., Hillier, A., Patel, P., Ram, 

L. J., Van Thiel, D. H., and Nadir, A. (2008) Hepatic histopathology and clinical 

characteristics associated with antiretroviral therapy in HIV patients without viral 

hepatitis, Eur J Gastroenterol Hepatol 20, 1194-1204. 

43. Gentile, C., Frye, M., and Pagliassotti, M. (2011) Endoplasmic reticulum stress and the 

unfolded protein response in nonalcoholic fatty liver disease, Antioxid Redox Signal. 

44. Malhi, H., and Kaufman, R. J. (2011) Endoplasmic reticulum stress in liver disease, J 

Hepatol 54, 795-809. 

45. Kaplowitz, N., Than, T. A., Shinohara, M., and Ji, C. (2007) Endoplasmic reticulum 

stress and liver injury, Semin Liver Dis 27, 367-377. 

46. Toth, A., Nickson, P., Mandl, A., Bannister, M. L., Toth, K., and Erhardt, P. (2007) 

Endoplasmic reticulum stress as a novel therapeutic target in heart diseases, Cardiovasc 

Hematol Disord Drug Targets 7, 205-218. 

47. Lin, J. H., Walter, P., and Yen, T. S. (2008) Endoplasmic reticulum stress in disease 

pathogenesis, Annu Rev Pathol 3, 399-425. 

48. Yoshida, H. (2007) ER stress and diseases, FEBS J 274, 630-658. 

49. Zhou, H., Gurley, E. C., Jarujaron, S., Ding, H., Fang, Y., Xu, Z., Pandak, W. M., Jr., and 

Hylemon, P. B. (2006) HIV protease inhibitors activate the unfolded protein response and 

disrupt lipid metabolism in primary hepatocytes, American journal of 

physiology.Gastrointestinal and liver physiology 291, G1071-1080. 

50. Zhou, H., Pandak, W. M., Jr., and Hylemon, P. B. (2006) Cellular mechanisms of 

lipodystrophy induction by HIV protease inhibitors, Future Lipidology 1, 163. 



www.manaraa.com

161 

 

51. Zhou, H., Pandak, W. M., Jr., Lyall, V., Natarajan, R., and Hylemon, P. B. (2005) HIV 

protease inhibitors activate the unfolded protein response in macrophages: implication for 

atherosclerosis and cardiovascular disease, Molecular pharmacology 68, 690-700. 

52. Zhou, J., Lhotak, S., Hilditch, B. A., and Austin, R. C. (2005) Activation of the unfolded 

protein response occurs at all stages of atherosclerotic lesion development in 

apolipoprotein E-deficient mice, Circulation 111, 1814-1821. 

53. Wu, X., Sun, L., Zha, W., Studer, E., Gurley, E., Chen, L., Wang, X., Hylemon, P. B., 

Pandak, W. M., Jr., Sanyal, A. J., Zhang, L., Wang, G., Chen, J., Wang, J. Y., and Zhou, 

H. (2010) HIV protease inhibitors induce endoplasmic reticulum stress and disrupt barrier 

integrity in intestinal epithelial cells, Gastroenterology 138, 197-209. 

54. Djedaini, M., Peraldi, P., Drici, M. D., Darini, C., Saint-Marc, P., Dani, C., and Ladoux, 

A. (2009) Lopinavir co-induces insulin resistance and ER stress in human adipocytes, 

Biochemical and biophysical research communications 386, 96-100. 

55. Cho, H. Y., Thomas, S., Golden, E. B., Gaffney, K. J., Hofman, F. M., Chen, T. C., 

Louie, S. G., Petasis, N. A., and Schonthal, A. H. (2009) Enhanced killing of chemo-

resistant breast cancer cells via controlled aggravation of ER stress, Cancer Lett 282, 87-

97. 

56. Pyrko, P., Kardosh, A., Wang, W., Xiong, W., Schonthal, A. H., and Chen, T. C. (2007) 

HIV-1 protease inhibitors nelfinavir and atazanavir induce malignant glioma death by 

triggering endoplasmic reticulum stress, Cancer Res 67, 10920-10928. 

57. Nishina, S., Korenaga, M., Hidaka, I., Shinozaki, A., Sakai, A., Gondo, T., Tabuchi, M., 

Kishi, F., and Hino, K. (2010) Hepatitis C virus protein and iron overload induce hepatic 

steatosis through the unfolded protein response in mice, Liver Int 30, 683-692. 



www.manaraa.com

162 

 

58. Kammoun, H. L., Chabanon, H., Hainault, I., Luquet, S., Magnan, C., Koike, T., Ferre, 

P., and Foufelle, F. (2009) GRP78 expression inhibits insulin and ER stress-induced 

SREBP-1c activation and reduces hepatic steatosis in mice, J Clin Invest 119, 1201-1215. 

59. Alhusaini, S., McGee, K., Schisano, B., Harte, A., McTernan, P., Kumar, S., and 

Tripathi, G. (2010) Lipopolysaccharide, high glucose and saturated fatty acids induce 

endoplasmic reticulum stress in cultured primary human adipocytes: Salicylate alleviates 

this stress, Biochem Biophys Res Commun 397, 472-478. 

60. Boden, G., Duan, X., Homko, C., Molina, E. J., Song, W., Perez, O., Cheung, P., and 

Merali, S. (2008) Increase in endoplasmic reticulum stress-related proteins and genes in 

adipose tissue of obese, insulin-resistant individuals, Diabetes 57, 2438-2444. 

61. Gregor, M. F., Yang, L., Fabbrini, E., Mohammed, B. S., Eagon, J. C., Hotamisligil, G. 

S., and Klein, S. (2009) Endoplasmic reticulum stress is reduced in tissues of obese 

subjects after weight loss, Diabetes 58, 693-700. 

62. Sharma, N. K., Das, S. K., Mondal, A. K., Hackney, O. G., Chu, W. S., Kern, P. A., 

Rasouli, N., Spencer, H. J., Yao-Borengasser, A., and Elbein, S. C. (2008) Endoplasmic 

reticulum stress markers are associated with obesity in nondiabetic subjects, J Clin 

Endocrinol Metab 93, 4532-4541. 

63. Yoshida, H., Matsui, T., Yamamoto, A., Okada, T., and Mori, K. (2001) XBP1 mRNA is 

induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active 

transcription factor, Cell 107, 881-891. 

64. Yoshida, H., Matsui, T., Hosokawa, N., Kaufman, R. J., Nagata, K., and Mori, K. (2003) 

A time-dependent phase shift in the mammalian unfolded protein response, Dev Cell 4, 

265-271. 



www.manaraa.com

163 

 

65. Lee, A. H., Iwakoshi, N. N., and Glimcher, L. H. (2003) XBP-1 regulates a subset of 

endoplasmic reticulum resident chaperone genes in the unfolded protein response, Mol 

Cell Biol 23, 7448-7459. 

66. Sriburi, R., Jackowski, S., Mori, K., and Brewer, J. W. (2004) XBP1: a link between the 

unfolded protein response, lipid biosynthesis, and biogenesis of the endoplasmic 

reticulum, J Cell Biol 167, 35-41. 

67. Reimold, A. M., Iwakoshi, N. N., Manis, J., Vallabhajosyula, P., Szomolanyi-Tsuda, E., 

Gravallese, E. M., Friend, D., Grusby, M. J., Alt, F., and Glimcher, L. H. (2001) Plasma 

cell differentiation requires the transcription factor XBP-1, Nature 412, 300-307. 

68. Lee, A. H., Chu, G. C., Iwakoshi, N. N., and Glimcher, L. H. (2005) XBP-1 is required 

for biogenesis of cellular secretory machinery of exocrine glands, Embo J 24, 4368-4380. 

69. Sriburi, R., Bommiasamy, H., Buldak, G. L., Robbins, G. R., Frank, M., Jackowski, S., 

and Brewer, J. W. (2007) Coordinate regulation of phospholipid biosynthesis and 

secretory pathway gene expression in XBP-1(S)-induced endoplasmic reticulum 

biogenesis, J Biol Chem 282, 7024-7034. 

70. Damiano, F., Alemanno, S., Gnoni, G. V., and Siculella, L. (2010) Translational control 

of the sterol-regulatory transcription factor SREBP-1 mRNA in response to serum 

starvation or ER stress is mediated by an internal ribosome entry site, Biochem J 429, 

603-612. 

71. DeGracia, D. J., Kumar, R., Owen, C. R., Krause, G. S., and White, B. C. (2002) 

Molecular pathways of protein synthesis inhibition during brain reperfusion: implications 

for neuronal survival or death, J Cereb Blood Flow Metab 22, 127-141. 



www.manaraa.com

164 

 

72. Yang, Q., and Sarnow, P. (1997) Location of the internal ribosome entry site in the 5' 

non-coding region of the immunoglobulin heavy-chain binding protein (BiP) mRNA: 

evidence for specific RNA-protein interactions, Nucleic Acids Res 25, 2800-2807. 

73. Ameri, K., and Harris, A. L. (2008) Activating transcription factor 4, Int J Biochem Cell 

Biol 40, 14-21. 

74. Rutkowski, D. T., and Kaufman, R. J. (2003) All roads lead to ATF4, Dev Cell 4, 442-

444. 

75. Wek, R. C., Jiang, H. Y., and Anthony, T. G. (2006) Coping with stress: eIF2 kinases and 

translational control, Biochem Soc Trans 34, 7-11. 

76. Batchvarova, N., Wang, X. Z., and Ron, D. (1995) Inhibition of adipogenesis by the 

stress-induced protein CHOP (Gadd153), EMBO J 14, 4654-4661. 

77. Clarke, S. L., Robinson, C. E., and Gimble, J. M. (1997) CAAT/enhancer binding 

proteins directly modulate transcription from the peroxisome proliferator-activated 

receptor gamma 2 promoter, Biochem Biophys Res Commun 240, 99-103. 

78. Adelmant, G., Gilbert, J. D., and Freytag, S. O. (1998) Human translocation liposarcoma-

CCAAT/enhancer binding protein (C/EBP) homologous protein (TLS-CHOP) 

oncoprotein prevents adipocyte differentiation by directly interfering with C/EBPbeta 

function, J Biol Chem 273, 15574-15581. 

79. Wang, C., Huang, Z., Du, Y., Cheng, Y., Chen, S., and Guo, F. (2010) ATF4 regulates 

lipid metabolism and thermogenesis, Cell Res 20, 174-184. 

80. Bobrovnikova-Marjon, E., Hatzivassiliou, G., Grigoriadou, C., Romero, M., Cavener, D. 

R., Thompson, C. B., and Diehl, J. A. (2008) PERK-dependent regulation of lipogenesis 



www.manaraa.com

165 

 

during mouse mammary gland development and adipocyte differentiation, Proc Natl 

Acad Sci U S A 105, 16314-16319. 

81. Haze, K., Yoshida, H., Yanagi, H., Yura, T., and Mori, K. (1999) Mammalian 

transcription factor ATF6 is synthesized as a transmembrane protein and activated by 

proteolysis in response to endoplasmic reticulum stress, Mol Biol Cell 10, 3787-3799. 

82. Davenport, E. L., Morgan, G. J., and Davies, F. E. (2008) Untangling the unfolded 

protein response, Cell Cycle 7, 865-869. 

83. Urano, F., Wang, X., Bertolotti, A., Zhang, Y., Chung, P., Harding, H. P., and Ron, D. 

(2000) Coupling of stress in the ER to activation of JNK protein kinases by 

transmembrane protein kinase IRE1, Science 287, 664-666. 

84. Klee, M., Pallauf, K., Alcala, S., Fleischer, A., and Pimentel-Muinos, F. X. (2009) 

Mitochondrial apoptosis induced by BH3-only molecules in the exclusive presence of 

endoplasmic reticular Bak, Embo J 28, 1757-1768. 

85. Breckenridge, D. G., Germain, M., Mathai, J. P., Nguyen, M., and Shore, G. C. (2003) 

Regulation of apoptosis by endoplasmic reticulum pathways, Oncogene 22, 8608-8618. 

86. Rizzuto, R., and Pozzan, T. (2006) Microdomains of intracellular Ca2+: molecular 

determinants and functional consequences, Physiol Rev 86, 369-408. 

87. Rao, R. V., Poksay, K. S., Castro-Obregon, S., Schilling, B., Row, R. H., del Rio, G., 

Gibson, B. W., Ellerby, H. M., and Bredesen, D. E. (2004) Molecular components of a 

cell death pathway activated by endoplasmic reticulum stress, J Biol Chem 279, 177-187. 

88. Oyadomari, S., and Mori, M. (2004) Roles of CHOP/GADD153 in endoplasmic 

reticulum stress, Cell Death Differ 11, 381-389. 



www.manaraa.com

166 

 

89. Tabas, I., and Ron, D. (2011) Integrating the mechanisms of apoptosis induced by 

endoplasmic reticulum stress, Nat Cell Biol 13, 184-190. 

90. Rao, R. V., Peel, A., Logvinova, A., del Rio, G., Hermel, E., Yokota, T., Goldsmith, P. 

C., Ellerby, L. M., Ellerby, H. M., and Bredesen, D. E. (2002) Coupling endoplasmic 

reticulum stress to the cell death program: role of the ER chaperone GRP78, FEBS Lett 

514, 122-128. 

91. McCullough, K. D., Martindale, J. L., Klotz, L. O., Aw, T. Y., and Holbrook, N. J. 

(2001) Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 

and perturbing the cellular redox state, Mol Cell Biol 21, 1249-1259. 

92. Chiribau, C. B., Gaccioli, F., Huang, C. C., Yuan, C. L., and Hatzoglou, M. (2010) 

Molecular symbiosis of CHOP and C/EBP beta isoform LIP contributes to endoplasmic 

reticulum stress-induced apoptosis, Mol Cell Biol 30, 3722-3731. 

93. Marciniak, S. J., Yun, C. Y., Oyadomari, S., Novoa, I., Zhang, Y., Jungreis, R., Nagata, 

K., Harding, H. P., and Ron, D. (2004) CHOP induces death by promoting protein 

synthesis and oxidation in the stressed endoplasmic reticulum, Genes Dev 18, 3066-3077. 

94. Li, G., Mongillo, M., Chin, K. T., Harding, H., Ron, D., Marks, A. R., and Tabas, I. 

(2009) Role of ERO1-alpha-mediated stimulation of inositol 1,4,5-triphosphate receptor 

activity in endoplasmic reticulum stress-induced apoptosis, J Cell Biol 186, 783-792. 

95. Kyriakis, J. M., Banerjee, P., Nikolakaki, E., Dai, T., Rubie, E. A., Ahmad, M. F., 

Avruch, J., and Woodgett, J. R. (1994) The stress-activated protein kinase subfamily of c-

Jun kinases, Nature 369, 156-160. 



www.manaraa.com

167 

 

96. Xia, Z., Dickens, M., Raingeaud, J., Davis, R. J., and Greenberg, M. E. (1995) Opposing 

effects of ERK and JNK-p38 MAP kinases on apoptosis, Science (New York, N.Y.) 270, 

1326-1331. 

97. Tournier, C., Hess, P., Yang, D. D., Xu, J., Turner, T. K., Nimnual, A., Bar-Sagi, D., 

Jones, S. N., Flavell, R. A., and Davis, R. J. (2000) Requirement of JNK for stress-

induced activation of the cytochrome c-mediated death pathway, Science (New York, 

N.Y.) 288, 870-874. 

98. Hotchkiss, R. S., Strasser, A., McDunn, J. E., and Swanson, P. E. (2009) Cell death, N 

Engl J Med 361, 1570-1583. 

99. Mijaljica, D., Prescott, M., and Devenish, R. J. (2010) Autophagy in disease, Methods in 

molecular biology (Clifton, N.J.) 648, 79-92. 

100. Todde, V., Veenhuis, M., and van der Klei, I. J. (2009) Autophagy: principles and 

significance in health and disease, Biochim Biophys Acta 1792, 3-13. 

101. Li, W., Yang, Q., and Mao, Z. (2011) Chaperone-mediated autophagy: machinery, 

regulation and biological consequences, Cell Mol Life Sci 68, 749-763. 

102. Tolkovsky, A. M. (2009) Mitophagy, Biochim Biophys Acta 1793, 1508-1515. 

103. Kovsan, J., Bashan, N., Greenberg, A. S., and Rudich, A. (2010) Potential role of 

autophagy in modulation of lipid metabolism, Am J Physiol Endocrinol Metab 298, E1-7. 

104. Suzuki, K., Kirisako, T., Kamada, Y., Mizushima, N., Noda, T., and Ohsumi, Y. (2001) 

The pre-autophagosomal structure organized by concerted functions of APG genes is 

essential for autophagosome formation, Embo J 20, 5971-5981. 

105. Juhasz, G., and Neufeld, T. P. (2006) Autophagy: a forty-year search for a missing 

membrane source, PLoS Biol 4, e36. 



www.manaraa.com

168 

 

106. Dunn, W. A., Jr. (1990) Studies on the mechanisms of autophagy: maturation of the 

autophagic vacuole, J Cell Biol 110, 1935-1945. 

107. Dunn, W. A., Jr. (1994) Autophagy and related mechanisms of lysosome-mediated 

protein degradation, Trends Cell Biol 4, 139-143. 

108. Kawai, A., Uchiyama, H., Takano, S., Nakamura, N., and Ohkuma, S. (2007) 

Autophagosome-lysosome fusion depends on the pH in acidic compartments in CHO 

cells, Autophagy 3, 154-157. 

109. Burman, C., and Ktistakis, N. T. (2010) Autophagosome formation in mammalian cells, 

Semin Immunopathol 32, 397-413. 

110. Klionsky, D. J., Cregg, J. M., Dunn, W. A., Jr., Emr, S. D., Sakai, Y., Sandoval, I. V., 

Sibirny, A., Subramani, S., Thumm, M., Veenhuis, M., and Ohsumi, Y. (2003) A unified 

nomenclature for yeast autophagy-related genes, Dev Cell 5, 539-545. 

111. Suzuki, K., and Ohsumi, Y. (2010) Current knowledge of the pre-autophagosomal 

structure (PAS), FEBS Lett 584, 1280-1286. 

112. Ding, W. X., Manley, S., and Ni, H. M. (2011) The emerging role of autophagy in 

alcoholic liver disease, Exp Biol Med (Maywood) 236, 546-556. 

113. Gimenez-Xavier, P., Francisco, R., Platini, F., Perez, R., and Ambrosio, S. (2008) LC3-I 

conversion to LC3-II does not necessarily result in complete autophagy, International 

journal of molecular medicine 22, 781-785. 

114. Asanuma, K., Tanida, I., Shirato, I., Ueno, T., Takahara, H., Nishitani, T., Kominami, E., 

and Tomino, Y. (2003) MAP-LC3, a promising autophagosomal marker, is processed 

during the differentiation and recovery of podocytes from PAN nephrosis, Faseb J 17, 

1165-1167. 



www.manaraa.com

169 

 

115. Klionsky, D. J., Abeliovich, H., Agostinis, P., Agrawal, D. K., Aliev, G., Askew, D. S., 

Baba, M., Baehrecke, E. H., Bahr, B. A., Ballabio, A., Bamber, B. A., Bassham, D. C., 

Bergamini, E., Bi, X., Biard-Piechaczyk, M., Blum, J. S., Bredesen, D. E., Brodsky, J. L., 

Brumell, J. H., Brunk, U. T., Bursch, W., Camougrand, N., Cebollero, E., Cecconi, F., 

Chen, Y., Chin, L. S., Choi, A., Chu, C. T., Chung, J., Clarke, P. G., Clark, R. S., Clarke, 

S. G., Clave, C., Cleveland, J. L., Codogno, P., Colombo, M. I., Coto-Montes, A., Cregg, 

J. M., Cuervo, A. M., Debnath, J., Demarchi, F., Dennis, P. B., Dennis, P. A., Deretic, V., 

Devenish, R. J., Di Sano, F., Dice, J. F., Difiglia, M., Dinesh-Kumar, S., Distelhorst, C. 

W., Djavaheri-Mergny, M., Dorsey, F. C., Droge, W., Dron, M., Dunn, W. A., Jr., 

Duszenko, M., Eissa, N. T., Elazar, Z., Esclatine, A., Eskelinen, E. L., Fesus, L., Finley, 

K. D., Fuentes, J. M., Fueyo, J., Fujisaki, K., Galliot, B., Gao, F. B., Gewirtz, D. A., 

Gibson, S. B., Gohla, A., Goldberg, A. L., Gonzalez, R., Gonzalez-Estevez, C., Gorski, 

S., Gottlieb, R. A., Haussinger, D., He, Y. W., Heidenreich, K., Hill, J. A., Hoyer-

Hansen, M., Hu, X., Huang, W. P., Iwasaki, A., Jaattela, M., Jackson, W. T., Jiang, X., 

Jin, S., Johansen, T., Jung, J. U., Kadowaki, M., Kang, C., Kelekar, A., Kessel, D. H., 

Kiel, J. A., Kim, H. P., Kimchi, A., Kinsella, T. J., Kiselyov, K., Kitamoto, K., Knecht, 

E., Komatsu, M., Kominami, E., Kondo, S., Kovacs, A. L., Kroemer, G., Kuan, C. Y., 

Kumar, R., Kundu, M., Landry, J., Laporte, M., Le, W., Lei, H. Y., Lenardo, M. J., 

Levine, B., Lieberman, A., Lim, K. L., Lin, F. C., Liou, W., Liu, L. F., Lopez-Berestein, 

G., Lopez-Otin, C., Lu, B., Macleod, K. F., Malorni, W., Martinet, W., Matsuoka, K., 

Mautner, J., Meijer, A. J., Melendez, A., Michels, P., Miotto, G., Mistiaen, W. P., 

Mizushima, N., Mograbi, B., Monastyrska, I., Moore, M. N., Moreira, P. I., Moriyasu, 

Y., Motyl, T., Munz, C., Murphy, L. O., Naqvi, N. I., Neufeld, T. P., Nishino, I., Nixon, 



www.manaraa.com

170 

 

R. A., Noda, T., Nurnberg, B., Ogawa, M., Oleinick, N. L., Olsen, L. J., Ozpolat, B., 

Paglin, S., Palmer, G. E., Papassideri, I., Parkes, M., Perlmutter, D. H., Perry, G., 

Piacentini, M., Pinkas-Kramarski, R., Prescott, M., Proikas-Cezanne, T., Raben, N., 

Rami, A., Reggiori, F., Rohrer, B., Rubinsztein, D. C., Ryan, K. M., Sadoshima, J., 

Sakagami, H., Sakai, Y., Sandri, M., Sasakawa, C., Sass, M., Schneider, C., Seglen, P. 

O., Seleverstov, O., Settleman, J., Shacka, J. J., Shapiro, I. M., Sibirny, A., Silva-Zacarin, 

E. C., Simon, H. U., Simone, C., Simonsen, A., Smith, M. A., Spanel-Borowski, K., 

Srinivas, V., Steeves, M., Stenmark, H., Stromhaug, P. E., Subauste, C. S., Sugimoto, S., 

Sulzer, D., Suzuki, T., Swanson, M. S., Tabas, I., Takeshita, F., Talbot, N. J., Talloczy, 

Z., Tanaka, K., Tanaka, K., Tanida, I., Taylor, G. S., Taylor, J. P., Terman, A., 

Tettamanti, G., Thompson, C. B., Thumm, M., Tolkovsky, A. M., Tooze, S. A., Truant, 

R., Tumanovska, L. V., Uchiyama, Y., Ueno, T., Uzcategui, N. L., van der Klei, I., 

Vaquero, E. C., Vellai, T., Vogel, M. W., Wang, H. G., Webster, P., Wiley, J. W., Xi, Z., 

Xiao, G., Yahalom, J., Yang, J. M., Yap, G., Yin, X. M., Yoshimori, T., Yu, L., Yue, Z., 

Yuzaki, M., Zabirnyk, O., Zheng, X., Zhu, X., and Deter, R. L. (2008) Guidelines for the 

use and interpretation of assays for monitoring autophagy in higher eukaryotes, 

Autophagy 4, 151-175. 

116. Kawakami, T., Inagi, R., Takano, H., Sato, S., Ingelfinger, J. R., Fujita, T., and Nangaku, 

M. (2009) Endoplasmic reticulum stress induces autophagy in renal proximal tubular 

cells, Nephrology, dialysis, transplantation : official publication of the European Dialysis 

and Transplant Association - European Renal Association 24, 2665-2672. 

117. Yorimitsu, T., Nair, U., Yang, Z., and Klionsky, D. J. (2006) Endoplasmic reticulum 

stress triggers autophagy, J Biol Chem 281, 30299-30304. 



www.manaraa.com

171 

 

118. Ding, W. X., and Yin, X. M. (2008) Sorting, recognition and activation of the misfolded 

protein degradation pathways through macroautophagy and the proteasome, Autophagy 4, 

141-150. 

119. Ding, W. X., Ni, H. M., Gao, W., Yoshimori, T., Stolz, D. B., Ron, D., and Yin, X. M. 

(2007) Linking of autophagy to ubiquitin-proteasome system is important for the 

regulation of endoplasmic reticulum stress and cell viability, Am J Pathol 171, 513-524. 

120. Kouroku, Y., Fujita, E., Tanida, I., Ueno, T., Isoai, A., Kumagai, H., Ogawa, S., 

Kaufman, R. J., Kominami, E., and Momoi, T. (2007) ER stress (PERK/eIF2alpha 

phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step 

for autophagy formation, Cell Death Differ 14, 230-239. 

121. Yorimitsu, T., and Klionsky, D. J. (2007) Eating the endoplasmic reticulum: quality 

control by autophagy, Trends in cell biology 17, 279-285. 

122. Thorburn, A. (2008) Apoptosis and autophagy: regulatory connections between two 

supposedly different processes, Apoptosis 13, 1-9. 

123. Price, J., Zaidi, A. K., Bohensky, J., Srinivas, V., Shapiro, I. M., and Ali, H. (2010) Akt-1 

mediates survival of chondrocytes from endoplasmic reticulum-induced stress, Journal of 

cellular physiology 222, 502-508. 

124. Qin, L., Wang, Z., Tao, L., and Wang, Y. (2010) ER stress negatively regulates 

AKT/TSC/mTOR pathway to enhance autophagy, Autophagy 6, 239-247. 

125. Ogata, M., Hino, S., Saito, A., Morikawa, K., Kondo, S., Kanemoto, S., Murakami, T., 

Taniguchi, M., Tanii, I., Yoshinaga, K., Shiosaka, S., Hammarback, J. A., Urano, F., and 

Imaizumi, K. (2006) Autophagy is activated for cell survival after endoplasmic reticulum 

stress, Mol Cell Biol 26, 9220-9231. 



www.manaraa.com

172 

 

126. Gupta, A. K., Li, B., Cerniglia, G. J., Ahmed, M. S., Hahn, S. M., and Maity, A. (2007) 

The HIV protease inhibitor nelfinavir downregulates Akt phosphorylation by inhibiting 

proteasomal activity and inducing the unfolded protein response, Neoplasia 9, 271-278. 

127. Schleicher, S. M., Moretti, L., Varki, V., and Lu, B. (2010) Progress in the unraveling of 

the endoplasmic reticulum stress/autophagy pathway and cancer: implications for future 

therapeutic approaches, Drug Resist Updat 13, 79-86. 

128. Zhou, L., Zhang, J., Fang, Q., Liu, M., Liu, X., Jia, W., Dong, L. Q., and Liu, F. (2009) 

Autophagy-mediated insulin receptor down-regulation contributes to endoplasmic 

reticulum stress-induced insulin resistance, Mol Pharmacol 76, 596-603. 

129. Kim, K. W., Moretti, L., Mitchell, L. R., Jung, D. K., and Lu, B. (2010) Endoplasmic 

reticulum stress mediates radiation-induced autophagy by perk-eIF2alpha in caspase-3/7-

deficient cells, Oncogene 29, 3241-3251. 

130. Rzymski, T., Milani, M., Pike, L., Buffa, F., Mellor, H. R., Winchester, L., Pires, I., 

Hammond, E., Ragoussis, I., and Harris, A. L. (2010) Regulation of autophagy by ATF4 

in response to severe hypoxia, Oncogene 29, 4424-4435. 

131. Milani, M., Rzymski, T., Mellor, H. R., Pike, L., Bottini, A., Generali, D., and Harris, A. 

L. (2009) The role of ATF4 stabilization and autophagy in resistance of breast cancer 

cells treated with Bortezomib, Cancer Res 69, 4415-4423. 

132. Seo, Y. K., Jeon, T. I., Chong, H. K., Biesinger, J., Xie, X., and Osborne, T. F. (2011) 

Genome-wide Localization of SREBP-2 in Hepatic Chromatin Predicts a Role in 

Autophagy, Cell Metab 13, 367-375. 

133. Cheng, J., Ohsaki, Y., Tauchi-Sato, K., Fujita, A., and Fujimoto, T. (2006) Cholesterol 

depletion induces autophagy, Biochem Biophys Res Commun 351, 246-252. 



www.manaraa.com

173 

 

134. Bays, H. E., Gonzalez-Campoy, J. M., Henry, R. R., Bergman, D. A., Kitabchi, A. E., 

Schorr, A. B., and Rodbard, H. W. (2008) Is adiposopathy (sick fat) an endocrine 

disease?, Int J Clin Pract 62, 1474-1483. 

135. Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., 

Moorman, M. A., Simonetti, D. W., Craig, S., and Marshak, D. R. (1999) Multilineage 

potential of adult human mesenchymal stem cells, Science 284, 143-147. 

136. Otto, T. C., and Lane, M. D. (2005) Adipose development: from stem cell to adipocyte, 

Crit Rev Biochem Mol Biol 40, 229-242. 

137. Atmani, H., Chappard, D., and Basle, M. F. (2003) Proliferation and differentiation of 

osteoblasts and adipocytes in rat bone marrow stromal cell cultures: effects of 

dexamethasone and calcitriol, J Cell Biochem 89, 364-372. 

138. Amos, P. J., Shang, H., Bailey, A. M., Taylor, A., Katz, A. J., and Peirce, S. M. (2008) 

IFATS collection: The role of human adipose-derived stromal cells in inflammatory 

microvascular remodeling and evidence of a perivascular phenotype, In Stem cells, pp 

2682-2690. 

139. Tang, Q. Q., Otto, T. C., and Lane, M. D. (2004) Commitment of C3H10T1/2 pluripotent 

stem cells to the adipocyte lineage, Proc Natl Acad Sci U S A 101, 9607-9611. 

140. Liu, J., DeYoung, S. M., Zhang, M., Zhang, M., Cheng, A., and Saltiel, A. R. (2005) 

Changes in integrin expression during adipocyte differentiation, Cell Metab 2, 165-177. 

141. Lane, M. D., Tang, Q. Q., and Jiang, M. S. (1999) Role of the CCAAT enhancer binding 

proteins (C/EBPs) in adipocyte differentiation, Biochem Biophys Res Commun 266, 677-

683. 



www.manaraa.com

174 

 

142. Darlington, G. J., Ross, S. E., and MacDougald, O. A. (1998) The role of C/EBP genes in 

adipocyte differentiation, J Biol Chem 273, 30057-30060. 

143. Zhang, J. W., Klemm, D. J., Vinson, C., and Lane, M. D. (2004) Role of CREB in 

transcriptional regulation of CCAAT/enhancer-binding protein beta gene during 

adipogenesis, J Biol Chem 279, 4471-4478. 

144. Tanaka, T., Yoshida, N., Kishimoto, T., and Akira, S. (1997) Defective adipocyte 

differentiation in mice lacking the C/EBPbeta and/or C/EBPdelta gene, Embo J 16, 7432-

7443. 

145. Christy, R. J., Kaestner, K. H., Geiman, D. E., and Lane, M. D. (1991) CCAAT/enhancer 

binding protein gene promoter: binding of nuclear factors during differentiation of 3T3-

L1 preadipocytes, Proc Natl Acad Sci U S A 88, 2593-2597. 

146. Schwarz, E. J., Reginato, M. J., Shao, D., Krakow, S. L., and Lazar, M. A. (1997) 

Retinoic acid blocks adipogenesis by inhibiting C/EBPbeta-mediated transcription, Mol 

Cell Biol 17, 1552-1561. 

147. Shao, D., and Lazar, M. A. (1997) Peroxisome proliferator activated receptor gamma, 

CCAAT/enhancer-binding protein alpha, and cell cycle status regulate the commitment to 

adipocyte differentiation, J Biol Chem 272, 21473-21478. 

148. Tamori, Y., Masugi, J., Nishino, N., and Kasuga, M. (2002) Role of peroxisome 

proliferator-activated receptor-gamma in maintenance of the characteristics of mature 

3T3-L1 adipocytes, Diabetes 51, 2045-2055. 

149. Barak, Y., Nelson, M. C., Ong, E. S., Jones, Y. Z., Ruiz-Lozano, P., Chien, K. R., Koder, 

A., and Evans, R. M. (1999) PPAR gamma is required for placental, cardiac, and adipose 

tissue development, Molecular cell 4, 585-595. 



www.manaraa.com

175 

 

150. Lehrke, M., and Lazar, M. A. (2005) The many faces of PPARgamma, Cell 123, 993-

999. 

151. Savage, D. B., Tan, G. D., Acerini, C. L., Jebb, S. A., Agostini, M., Gurnell, M., 

Williams, R. L., Umpleby, A. M., Thomas, E. L., Bell, J. D., Dixon, A. K., Dunne, F., 

Boiani, R., Cinti, S., Vidal-Puig, A., Karpe, F., Chatterjee, V. K., and O'Rahilly, S. 

(2003) Human metabolic syndrome resulting from dominant-negative mutations in the 

nuclear receptor peroxisome proliferator-activated receptor-gamma, Diabetes 52, 910-

917. 

152. Camp, H. S., Ren, D., and Leff, T. (2002) Adipogenesis and fat-cell function in obesity 

and diabetes, Trends Mol Med 8, 442-447. 

153. Tontonoz, P., Hu, E., and Spiegelman, B. M. (1994) Stimulation of adipogenesis in 

fibroblasts by PPAR gamma 2, a lipid-activated transcription factor, Cell 79, 1147-1156. 

154. Schoonjans, K., Peinado-Onsurbe, J., Lefebvre, A. M., Heyman, R. A., Briggs, M., Deeb, 

S., Staels, B., and Auwerx, J. (1996) PPARalpha and PPARgamma activators direct a 

distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene, 

Embo J 15, 5336-5348. 

155. Kim, Y. J., Cho, S. Y., Yun, C. H., Moon, Y. S., Lee, T. R., and Kim, S. H. (2008) 

Transcriptional activation of Cidec by PPARgamma2 in adipocyte, Biochem Biophys Res 

Commun 377, 297-302. 

156. Kim, J. Y., Tillison, K., Lee, J. H., Rearick, D. A., and Smas, C. M. (2006) The adipose 

tissue triglyceride lipase ATGL/PNPLA2 is downregulated by insulin and TNF-alpha in 

3T3-L1 adipocytes and is a target for transactivation by PPARgamma, Am J Physiol 

Endocrinol Metab 291, E115-127. 



www.manaraa.com

176 

 

157. Ohoka, N., Kato, S., Takahashi, Y., Hayashi, H., and Sato, R. (2009) The orphan nuclear 

receptor RORalpha restrains adipocyte differentiation through a reduction of C/EBPbeta 

activity and perilipin gene expression, Mol Endocrinol 23, 759-771. 

158. Hua, X., Wu, J., Goldstein, J. L., Brown, M. S., and Hobbs, H. H. (1995) Structure of the 

human gene encoding sterol regulatory element binding protein-1 (SREBF1) and 

localization of SREBF1 and SREBF2 to chromosomes 17p11.2 and 22q13, Genomics 25, 

667-673. 

159. Kim, J. B., and Spiegelman, B. M. (1996) ADD1/SREBP1 promotes adipocyte 

differentiation and gene expression linked to fatty acid metabolism, Genes Dev 10, 1096-

1107. 

160. Farese, R. V., Jr., and Walther, T. C. (2009) Lipid droplets finally get a little R-E-S-P-E-

C-T, Cell 139, 855-860. 

161. Brasaemle, D. L., Barber, T., Kimmel, A. R., and Londos, C. (1997) Post-translational 

regulation of perilipin expression. Stabilization by stored intracellular neutral lipids, J 

Biol Chem 272, 9378-9387. 

162. Yamaguchi, T., Omatsu, N., Morimoto, E., Nakashima, H., Ueno, K., Tanaka, T., 

Satouchi, K., Hirose, F., and Osumi, T. (2007) CGI-58 facilitates lipolysis on lipid 

droplets but is not involved in the vesiculation of lipid droplets caused by hormonal 

stimulation, J Lipid Res 48, 1078-1089. 

163. Brasaemle, D. L., Subramanian, V., Garcia, A., Marcinkiewicz, A., and Rothenberg, A. 

(2009) Perilipin A and the control of triacylglycerol metabolism, Mol Cell Biochem 326, 

15-21. 



www.manaraa.com

177 

 

164. Hickenbottom, S. J., Kimmel, A. R., Londos, C., and Hurley, J. H. (2004) Structure of a 

lipid droplet protein; the PAT family member TIP47, Structure 12, 1199-1207. 

165. Ahmadian, M., Wang, Y., and Sul, H. S. (2010) Lipolysis in adipocytes, Int J Biochem 

Cell Biol 42, 555-559. 

166. Wolins, N. E., Skinner, J. R., Schoenfish, M. J., Tzekov, A., Bensch, K. G., and Bickel, 

P. E. (2003) Adipocyte protein S3-12 coats nascent lipid droplets, J Biol Chem 278, 

37713-37721. 

167. Wolins, N. E., Quaynor, B. K., Skinner, J. R., Schoenfish, M. J., Tzekov, A., and Bickel, 

P. E. (2005) S3-12, Adipophilin, and TIP47 package lipid in adipocytes, J Biol Chem 

280, 19146-19155. 

168. Sztalryd, C., Bell, M., Lu, X., Mertz, P., Hickenbottom, S., Chang, B. H., Chan, L., 

Kimmel, A. R., and Londos, C. (2006) Functional compensation for adipose 

differentiation-related protein (ADFP) by Tip47 in an ADFP null embryonic cell line, J 

Biol Chem 281, 34341-34348. 

169. Brasaemle, D. L., Barber, T., Wolins, N. E., Serrero, G., Blanchette-Mackie, E. J., and 

Londos, C. (1997) Adipose differentiation-related protein is an ubiquitously expressed 

lipid storage droplet-associated protein, J Lipid Res 38, 2249-2263. 

170. Bickel, P. E., Tansey, J. T., and Welte, M. A. (2009) PAT proteins, an ancient family of 

lipid droplet proteins that regulate cellular lipid stores, Biochim Biophys Acta 1791, 419-

440. 

171. Martinez-Botas, J., Anderson, J. B., Tessier, D., Lapillonne, A., Chang, B. H., Quast, M. 

J., Gorenstein, D., Chen, K. H., and Chan, L. (2000) Absence of perilipin results in 

leanness and reverses obesity in Lepr(db/db) mice, Nat Genet 26, 474-479. 



www.manaraa.com

178 

 

172. Tansey, J. T., Sztalryd, C., Gruia-Gray, J., Roush, D. L., Zee, J. V., Gavrilova, O., 

Reitman, M. L., Deng, C. X., Li, C., Kimmel, A. R., and Londos, C. (2001) Perilipin 

ablation results in a lean mouse with aberrant adipocyte lipolysis, enhanced leptin 

production, and resistance to diet-induced obesity, Proc Natl Acad Sci U S A 98, 6494-

6499. 

173. Walther, T. C., and Farese, R. V., Jr. (2009) The life of lipid droplets, Biochim Biophys 

Acta 1791, 459-466. 

174. Robenek H., B. I., Robenek M.J., Hofnagel O., Ruebel A., Troyer D., and Severs N.J. 

(2010) Topography of lipid droplet-associated proteins: insights from freeze-fracture 

replica immunogold labeling., Journal of Lipids 2011, 1-10. 

175. Guo, Y., Walther, T. C., Rao, M., Stuurman, N., Goshima, G., Terayama, K., Wong, J. S., 

Vale, R. D., Walter, P., and Farese, R. V. (2008) Functional genomic screen reveals 

genes involved in lipid-droplet formation and utilization, Nature 453, 657-661. 

176. Mohamed-Ali, V., Pinkney, J. H., and Coppack, S. W. (1998) Adipose tissue as an 

endocrine and paracrine organ, International journal of obesity and related metabolic 

disorders : journal of the International Association for the Study of Obesity 22, 1145-

1158. 

177. Ahima, R. S., and Flier, J. S. (2000) Adipose tissue as an endocrine organ, Trends in 

endocrinology and metabolism: TEM 11, 327-332. 

178. Laharrague, P., and Casteilla, L. The emergence of adipocytes, Endocr Dev 19, 21-30. 

179. Billon, N., Iannarelli, P., Monteiro, M. C., Glavieux-Pardanaud, C., Richardson, W. D., 

Kessaris, N., Dani, C., and Dupin, E. (2007) The generation of adipocytes by the neural 

crest, Development 134, 2283-2292. 



www.manaraa.com

179 

 

180. Adams, M., Montague, C. T., Prins, J. B., Holder, J. C., Smith, S. A., Sanders, L., Digby, 

J. E., Sewter, C. P., Lazar, M. A., Chatterjee, V. K., and O'Rahilly, S. (1997) Activators 

of peroxisome proliferator-activated receptor gamma have depot-specific effects on 

human preadipocyte differentiation, J Clin Invest 100, 3149-3153. 

181. Lefebvre, A. M., Laville, M., Vega, N., Riou, J. P., van Gaal, L., Auwerx, J., and Vidal, 

H. (1998) Depot-specific differences in adipose tissue gene expression in lean and obese 

subjects, Diabetes 47, 98-103. 

182. Mallewa, J. E., Wilkins, E., Vilar, J., Mallewa, M., Doran, D., Back, D., and 

Pirmohamed, M. (2008) HIV-associated lipodystrophy: a review of underlying 

mechanisms and therapeutic options, J Antimicrob Chemother 62, 648-660. 

183. Sha, H., He, Y., Chen, H., Wang, C., Zenno, A., Shi, H., Yang, X., Zhang, X., and Qi, L. 

(2009) The IRE1alpha-XBP1 pathway of the unfolded protein response is required for 

adipogenesis, Cell Metab 9, 556-564. 

184. Adachi, Y., Yamamoto, K., Okada, T., Yoshida, H., Harada, A., and Mori, K. (2008) 

ATF6 is a transcription factor specializing in the regulation of quality control proteins in 

the endoplasmic reticulum, Cell Struct Funct 33, 75-89. 

185. Shimomura, I., Hammer, R. E., Richardson, J. A., Ikemoto, S., Bashmakov, Y., 

Goldstein, J. L., and Brown, M. S. (1998) Insulin resistance and diabetes mellitus in 

transgenic mice expressing nuclear SREBP-1c in adipose tissue: model for congenital 

generalized lipodystrophy, Genes Dev 12, 3182-3194. 

186. Kim, J. B., Wright, H. M., Wright, M., and Spiegelman, B. M. (1998) ADD1/SREBP1 

activates PPARgamma through the production of endogenous ligand, Proc Natl Acad Sci 

U S A 95, 4333-4337. 



www.manaraa.com

180 

 

187. Le Lay, S., Lefrere, I., Trautwein, C., Dugail, I., and Krief, S. (2002) Insulin and sterol-

regulatory element-binding protein-1c (SREBP-1C) regulation of gene expression in 

3T3-L1 adipocytes. Identification of CCAAT/enhancer-binding protein beta as an 

SREBP-1C target, J Biol Chem 277, 35625-35634. 

188. Basseri, S., Lhotak, S., Sharma, A. M., and Austin, R. C. (2009) The chemical chaperone 

4-phenylbutyrate inhibits adipogenesis by modulating the unfolded protein response, J 

Lipid Res 50, 2486-2501. 

189. Shimada, T., Hiramatsu, N., Okamura, M., Hayakawa, K., Kasai, A., Yao, J., and 

Kitamura, M. (2007) Unexpected blockade of adipocyte differentiation by K-7174: 

implication for endoplasmic reticulum stress, Biochem Biophys Res Commun 363, 355-

360. 

190. Chen, L., Jarujaron, S., Wu, X., Sun, L., Zha, W., Liang, G., Wang, X., Gurley, E. C., 

Studer, E. J., Hylemon, P. B., Pandak, W. M., Jr., Zhang, L., Wang, G., Li, X., Dent, P., 

and Zhou, H. (2009) HIV protease inhibitor lopinavir-induced TNF-alpha and IL-6 

expression is coupled to the unfolded protein response and ERK signaling pathways in 

macrophages, Biochemical pharmacology 78, 70-77. 

191. Zha, W., Liang, G., Xiao, J., Studer, E. J., Hylemon, P. B., Pandak, W. M., Jr., Wang, G., 

Li, X., and Zhou, H. (2010) Berberine inhibits HIV protease inhibitor-induced 

inflammatory response by modulating ER stress signaling pathways in murine 

macrophages, PLoS One 5, e9069. 

192. Jones, S. P., Janneh, O., Back, D. J., and Pirmohamed, M. (2005) Altered adipokine 

response in murine 3T3-F442A adipocytes treated with protease inhibitors and nucleoside 

reverse transcriptase inhibitors, Antiviral Therapy 10, 207-213. 



www.manaraa.com

181 

 

193. Kim, R. J., Wilson, C. G., Wabitsch, M., Lazar, M. A., and Steppan, C. M. (2006) HIV 

protease inhibitor-specific alterations in human adipocyte differentiation and metabolism, 

Obesity (Silver Spring, Md.) 14, 994-1002. 

194. Leroyer, S., Vatier, C., Kadiri, S., Quette, J., Chapron, C., Capeau, J., and Antoine, B. 

(2011) Glyceroneogenesis is inhibited through HIV protease inhibitor-induced 

inflammation in human subcutaneous but not visceral adipose tissue, J Lipid Res 52, 207-

220. 

195. Meng, L., Zhou, J., Sasano, H., Suzuki, T., Zeitoun, K. M., and Bulun, S. E. (2001) 

Tumor necrosis factor alpha and interleukin 11 secreted by malignant breast epithelial 

cells inhibit adipocyte differentiation by selectively down-regulating CCAAT/enhancer 

binding protein alpha and peroxisome proliferator-activated receptor gamma: mechanism 

of desmoplastic reaction, Cancer Res 61, 2250-2255. 

196. Xu, H., Barnes, G. T., Yang, Q., Tan, G., Yang, D., Chou, C. J., Sole, J., Nichols, A., 

Ross, J. S., Tartaglia, L. A., and Chen, H. (2003) Chronic inflammation in fat plays a 

crucial role in the development of obesity-related insulin resistance, J Clin Invest 112, 

1821-1830. 

197. Bastard, J. P., Maachi, M., Lagathu, C., Kim, M. J., Caron, M., Vidal, H., Capeau, J., and 

Feve, B. (2006) Recent advances in the relationship between obesity, inflammation, and 

insulin resistance, Eur Cytokine Netw 17, 4-12. 

198. Hotamisligil, G. S. (2006) Inflammation and metabolic disorders, Nature 444, 860-867. 

199. Monteiro, R., and Azevedo, I. (2010) Chronic inflammation in obesity and the metabolic 

syndrome, Mediators Inflamm 2010. 



www.manaraa.com

182 

 

200. Hertel, J., Struthers, H., Horj, C. B., and Hruz, P. W. (2004) A structural basis for the 

acute effects of HIV protease inhibitors on GLUT4 intrinsic activity, J Biol Chem 279, 

55147-55152. 

201. Shibata, M., Yoshimura, K., Furuya, N., Koike, M., Ueno, T., Komatsu, M., Arai, H., 

Tanaka, K., Kominami, E., and Uchiyama, Y. (2009) The MAP1-LC3 conjugation 

system is involved in lipid droplet formation, Biochem Biophys Res Commun 382, 419-

423. 

202. Shibata, M., Yoshimura, K., Tamura, H., Ueno, T., Nishimura, T., Inoue, T., Sasaki, M., 

Koike, M., Arai, H., Kominami, E., and Uchiyama, Y. (2010) LC3, a microtubule-

associated protein1A/B light chain3, is involved in cytoplasmic lipid droplet formation, 

Biochem Biophys Res Commun 393, 274-279. 

203. Baerga, R., Zhang, Y., Chen, P. H., Goldman, S., and Jin, S. (2009) Targeted deletion of 

autophagy-related 5 (atg5) impairs adipogenesis in a cellular model and in mice, 

Autophagy 5, 1118-1130. 

204. Zhang, Y., Goldman, S., Baerga, R., Zhao, Y., Komatsu, M., and Jin, S. (2009) Adipose-

specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in 

adipogenesis, Proc Natl Acad Sci U S A 106, 19860-19865. 

205. Singh, R., Kaushik, S., Wang, Y., Xiang, Y., Novak, I., Komatsu, M., Tanaka, K., 

Cuervo, A. M., and Czaja, M. J. (2009) Autophagy regulates lipid metabolism, Nature 

458, 1131-1135. 

206. Zhou, J., Zhang, W., Liang, B., Casimiro, M. C., Whitaker-Menezes, D., Wang, M., 

Lisanti, M. P., Lanza-Jacoby, S., Pestell, R. G., and Wang, C. (2009) PPARgamma 



www.manaraa.com

183 

 

activation induces autophagy in breast cancer cells, Int J Biochem Cell Biol 41, 2334-

2342. 

207. Yan, J., Yang, H., Wang, G., Sun, L., Zhou, Y., Guo, Y., Xi, Z., and Jiang, X. (2010) 

Autophagy augmented by troglitazone is independent of EGFR transactivation and 

correlated with AMP-activated protein kinase signaling, Autophagy 6, 67-73. 

208. Kern, P. A., Di Gregorio, G. B., Lu, T., Rassouli, N., and Ranganathan, G. (2003) 

Adiponectin expression from human adipose tissue: relation to obesity, insulin resistance, 

and tumor necrosis factor-alpha expression, Diabetes 52, 1779-1785. 

209. Zhou, L., Liu, M., Zhang, J., Chen, H., Dong, L. Q., and Liu, F. (2010) DsbA-L alleviates 

endoplasmic reticulum stress-induced adiponectin downregulation, Diabetes 59, 2809-

2816. 

210. Lee, G. A., Rao, M. N., and Grunfeld, C. (2005) The effects of HIV protease inhibitors 

on carbohydrate and lipid metabolism, Curr HIV/AIDS Rep 2, 39-50. 

211. Woerle, H. J., Mariuz, P. R., Meyer, C., Reichman, R. C., Popa, E. M., Dostou, J. M., 

Welle, S. L., and Gerich, J. E. (2003) Mechanisms for the deterioration in glucose 

tolerance associated with HIV protease inhibitor regimens, Diabetes 52, 918-925. 

212. Feldstein, A. E. (2010) Novel insights into the pathophysiology of nonalcoholic fatty 

liver disease, Semin Liver Dis 30, 391-401. 

213. Hirosumi, J., Tuncman, G., Chang, L., Gorgun, C. Z., Uysal, K. T., Maeda, K., Karin, M., 

and Hotamisligil, G. S. (2002) A central role for JNK in obesity and insulin resistance, 

Nature 420, 333-336. 



www.manaraa.com

184 

 

214. Ozcan, U., Cao, Q., Yilmaz, E., Lee, A. H., Iwakoshi, N. N., Ozdelen, E., Tuncman, G., 

Gorgun, C., Glimcher, L. H., and Hotamisligil, G. S. (2004) Endoplasmic reticulum stress 

links obesity, insulin action, and type 2 diabetes, Science 306, 457-461. 

215. Borradaile, N. M., de Dreu, L. E., and Huff, M. W. (2003) Inhibition of net HepG2 cell 

apolipoprotein B secretion by the citrus flavonoid naringenin involves activation of 

phosphatidylinositol 3-kinase, independent of insulin receptor substrate-1 

phosphorylation, Diabetes 52, 2554-2561. 

216. Ota, T., Gayet, C., and Ginsberg, H. N. (2008) Inhibition of apolipoprotein B100 

secretion by lipid-induced hepatic endoplasmic reticulum stress in rodents, J Clin Invest 

118, 316-332. 

217. Sidiropoulos, K. G., Meshkani, R., Avramoglu-Kohen, R., and Adeli, K. (2007) Insulin 

inhibition of apolipoprotein B mRNA translation is mediated via the PI-3 kinase/mTOR 

signaling cascade but does not involve internal ribosomal entry site (IRES) initiation, 

Arch Biochem Biophys 465, 380-388. 

218. Qiu, W., Kohen-Avramoglu, R., Mhapsekar, S., Tsai, J., Austin, R. C., and Adeli, K. 

(2005) Glucosamine-induced endoplasmic reticulum stress promotes ApoB100 

degradation: evidence for Grp78-mediated targeting to proteasomal degradation, 

Arterioscler Thromb Vasc Biol 25, 571-577. 

219. Qiu, W., Zhang, J., Dekker, M. J., Wang, H., Huang, J., Brumell, J. H., and Adeli, K. 

(2011) Hepatic autophagy mediates endoplasmic reticulum stress-induced degradation of 

misfolded apolipoprotein B, Hepatology 53, 1515-1525. 



www.manaraa.com

185 

 

220. Chow, W. A., Guo, S., and Valdes-Albini, F. (2006) Nelfinavir induces liposarcoma 

apoptosis and cell cycle arrest by upregulating sterol regulatory element binding protein-

1, Anticancer Drugs 17, 891-903. 

221. Nguyen, A. T., Gagnon, A., Angel, J. B., and Sorisky, A. (2000) Ritonavir increases the 

level of active ADD-1/SREBP-1 protein during adipogenesis, Aids 14, 2467-2473. 

222. Cao, R., Hu, Y., Wang, Y., Gurley, E. C., Studer, E. J., Wang, X., Hylemon, P. B., 

Pandak, W. M., Sanyal, A. J., Zhang, L., and Zhou, H. (2010) Prevention of HIV protease 

inhibitor-induced dysregulation of hepatic lipid metabolism by raltegravir via 

endoplasmic reticulum stress signaling pathways, The Journal of pharmacology and 

experimental therapeutics 334, 530-539. 

223. Parker, R. A., Flint, O. P., Mulvey, R., Elosua, C., Wang, F., Fenderson, W., Wang, S., 

Yang, W. P., and Noor, M. A. (2005) Endoplasmic reticulum stress links dyslipidemia to 

inhibition of proteasome activity and glucose transport by HIV protease inhibitors, Mol 

Pharmacol 67, 1909-1919. 

224. Williams, K., Rao, Y. P., Natarajan, R., Pandak, W. M., and Hylemon, P. B. (2004) 

Indinavir alters sterol and fatty acid homeostatic mechanisms in primary rat hepatocytes 

by increasing levels of activated sterol regulatory element-binding proteins and 

decreasing cholesterol 7alpha-hydroxylase mRNA levels, Biochemical pharmacology 67, 

255-267. 

225. Singh, R. (2010) Autophagy and regulation of lipid metabolism, Results and problems in 

cell differentiation 52, 35-46. 



www.manaraa.com

186 

 

226. Mottillo, E. P., Shen, X. J., and Granneman, J. G. (2007) Role of hormone-sensitive 

lipase in beta-adrenergic remodeling of white adipose tissue, Am J Physiol Endocrinol 

Metab 293, E1188-1197. 

227. Wabitsch, M., Brenner, R. E., Melzner, I., Braun, M., Moller, P., Heinze, E., Debatin, K. 

M., and Hauner, H. (2001) Characterization of a human preadipocyte cell strain with high 

capacity for adipose differentiation, Int J Obes Relat Metab Disord 25, 8-15. 

228. Kanda, H., Tamori, Y., Shinoda, H., Yoshikawa, M., Sakaue, M., Udagawa, J., Otani, H., 

Tashiro, F., Miyazaki, J., and Kasuga, M. (2005) Adipocytes from Munc18c-null mice 

show increased sensitivity to insulin-stimulated GLUT4 externalization, J Clin Invest 

115, 291-301. 

229. Bissell, D. M., and Guzelian, P. S. (1980) Degradation of endogenous hepatic heme by 

pathways not yielding carbon monoxide. Studies in normal rat liver and in primary 

hepatocyte culture, J Clin Invest 65, 1135-1140. 

230. Thuillier, P., Baillie, R., Sha, X., and Clarke, S. D. (1998) Cytosolic and nuclear 

distribution of PPARgamma2 in differentiating 3T3-L1 preadipocytes, J Lipid Res 39, 

2329-2338. 

231. Or-Tzadikario, S., Sopher, R., and Gefen, A. (2010) Quantitative monitoring of lipid 

accumulation over time in cultured adipocytes as function of culture conditions: toward 

controlled adipose tissue engineering, Tissue Eng Part C Methods 16, 1167-1181. 

232. Zhou, H., Jarujaron, S., Gurley, E. C., Chen, L., Ding, H., Studer, E., Pandak, W. M., Jr., 

Hu, W., Zou, T., Wang, J. Y., and Hylemon, P. B. (2007) HIV protease inhibitors 

increase TNF-alpha and IL-6 expression in macrophages: involvement of the RNA-

binding protein HuR, Atherosclerosis 195, e134-143. 



www.manaraa.com

187 

 

233. Gills, J. J., Lopiccolo, J., Tsurutani, J., Shoemaker, R. H., Best, C. J., Abu-Asab, M. S., 

Borojerdi, J., Warfel, N. A., Gardner, E. R., Danish, M., Hollander, M. C., Kawabata, S., 

Tsokos, M., Figg, W. D., Steeg, P. S., and Dennis, P. A. (2007) Nelfinavir, A lead HIV 

protease inhibitor, is a broad-spectrum, anticancer agent that induces endoplasmic 

reticulum stress, autophagy, and apoptosis in vitro and in vivo, Clin Cancer Res 13, 

5183-5194. 

234. McLean, K., VanDeVen, N. A., Sorenson, D. R., Daudi, S., and Liu, J. R. (2009) The 

HIV protease inhibitor saquinavir induces endoplasmic reticulum stress, autophagy, and 

apoptosis in ovarian cancer cells, Gynecol Oncol 112, 623-630. 

235. Zhou, H., Pandak, W. M., Jr., and and Hylemon, P. B. (2006) Cellular mechanisms of 

lipodystrophy induction by HIV protease inhibitors, Future Lipidology 1, 163. 

236. Fiorenza, C. G., Chou, S. H., and Mantzoros, C. S. (2011) Lipodystrophy: 

pathophysiology and advances in treatment, Nat Rev Endocrinol 7, 137-150. 

237. Lionetti, L., Mollica, M. P., Lombardi, A., Cavaliere, G., Gifuni, G., and Barletta, A. 

(2009) From chronic overnutrition to insulin resistance: the role of fat-storing capacity 

and inflammation, Nutrition, metabolism, and cardiovascular diseases : NMCD 19, 146-

152. 

238. Virtue, S., and Vidal-Puig, A. (2010) Adipose tissue expandability, lipotoxicity and the 

Metabolic Syndrome--an allostatic perspective, Biochim Biophys Acta 1801, 338-349. 

239. Caron, M., Auclair, M., Sterlingot, H., Kornprobst, M., and Capeau, J. (2003) Some HIV 

protease inhibitors alter lamin A/C maturation and stability, SREBP-1 nuclear 

localization and adipocyte differentiation, AIDS (London, England) 17, 2437-2444. 



www.manaraa.com

188 

 

240. Cianflone, K., Zakarian, R., Stanculescu, C., and Germinario, R. (2006) Protease 

inhibitor effects on triglyceride synthesis and adipokine secretion in human omental and 

subcutaneous adipose tissue, Antiviral Therapy 11, 681-691. 

241. Grigem, S., Fischer-Posovszky, P., Debatin, K. M., Loizon, E., Vidal, H., and Wabitsch, 

M. (2005) The effect of the HIV protease inhibitor ritonavir on proliferation, 

differentiation, lipogenesis, gene expression and apoptosis of human preadipocytes and 

adipocytes, Hormone and metabolic research = Hormon- und Stoffwechselforschung = 

Hormones et metabolisme 37, 602-609. 

242. Jones, S. P., Waitt, C., Sutton, R., Back, D. J., and Pirmohamed, M. (2008) Effect of 

atazanavir and ritonavir on the differentiation and adipokine secretion of human 

subcutaneous and omental preadipocytes, AIDS (London, England) 22, 1293-1298. 

243. Saillan-Barreau, C., Tabbakh, O., Chavoin, J. P., Casteilla, L., and Penicaud, L. (2008) 

Drug-specific effect of nelfinavir and stavudine on primary culture of human 

preadipocytes, Journal of acquired immune deficiency syndromes (1999) 48, 20-25. 

244. Vernochet, C., Azoulay, S., Duval, D., Guedj, R., Cottrez, F., Vidal, H., Ailhaud, G., and 

Dani, C. (2005) Human immunodeficiency virus protease inhibitors accumulate into 

cultured human adipocytes and alter expression of adipocytokines, The Journal of 

biological chemistry 280, 2238-2243. 

245. Zhang, B., MacNaul, K., Szalkowski, D., Li, Z., Berger, J., and Moller, D. E. (1999) 

Inhibition of adipocyte differentiation by HIV protease inhibitors, The Journal of clinical 

endocrinology and metabolism 84, 4274-4277. 

246. Rutkowski, D. T., Wu, J., Back, S. H., Callaghan, M. U., Ferris, S. P., Iqbal, J., Clark, R., 

Miao, H., Hassler, J. R., Fornek, J., Katze, M. G., Hussain, M. M., Song, B., Swathirajan, 



www.manaraa.com

189 

 

J., Wang, J., Yau, G. D., and Kaufman, R. J. (2008) UPR pathways combine to prevent 

hepatic steatosis caused by ER stress-mediated suppression of transcriptional master 

regulators, Dev Cell 15, 829-840. 

247. Zheng, Z., Zhang, C., and Zhang, K. (2010) Role of unfolded protein response in 

lipogenesis, World journal of hepatology 2, 203-207. 

248. Colgan, S. M., Tang, D., Werstuck, G. H., and Austin, R. C. (2007) Endoplasmic 

reticulum stress causes the activation of sterol regulatory element binding protein-2, Int J 

Biochem Cell Biol 39, 1843-1851. 

249. Estrada, V., and Fuster, M. (2008) Darunavir in treatment-naive patients. The ARTEMIS 

study], Enfermedades infecciosas y microbiologia clinica 26 Suppl 10, 10-13. 

250. Becker, S., and Thornton, L. (2004) Fosamprenavir: advancing HIV protease inhibitor 

treatment options, Expert Opin Pharmacother 5, 1995-2005. 

251. Goudeau, H., and Goudeau, M. (1998) Depletion of intracellular Ca2+ stores, mediated 

by Mg2+-stimulated InsP3 liberation or thapsigargin, induces a capacitative Ca2+ influx 

in prawn oocytes, Dev Biol 193, 225-238. 

252. Torres, M., Castillo, K., Armisen, R., Stutzin, A., Soto, C., and Hetz, C. (2010) Prion 

protein misfolding affects calcium homeostasis and sensitizes cells to endoplasmic 

reticulum stress, PLoS One 5, e15658. 

253. Cinti, S., Mitchell, G., Barbatelli, G., Murano, I., Ceresi, E., Faloia, E., Wang, S., Fortier, 

M., Greenberg, A. S., and Obin, M. S. (2005) Adipocyte death defines macrophage 

localization and function in adipose tissue of obese mice and humans, J Lipid Res 46, 

2347-2355. 



www.manaraa.com

190 

 

254. Weisberg, S. P., McCann, D., Desai, M., Rosenbaum, M., Leibel, R. L., and Ferrante, A. 

W., Jr. (2003) Obesity is associated with macrophage accumulation in adipose tissue, J 

Clin Invest 112, 1796-1808. 

255. Strissel, K. J., Stancheva, Z., Miyoshi, H., Perfield, J. W., 2nd, DeFuria, J., Jick, Z., 

Greenberg, A. S., and Obin, M. S. (2007) Adipocyte death, adipose tissue remodeling, 

and obesity complications, Diabetes 56, 2910-2918. 

256. Murano, I., Barbatelli, G., Parisani, V., Latini, C., Muzzonigro, G., Castellucci, M., and 

Cinti, S. (2008) Dead adipocytes, detected as crown-like structures, are prevalent in 

visceral fat depots of genetically obese mice, J Lipid Res 49, 1562-1568. 

257. Lenhard, J. M., Furfine, E. S., Jain, R. G., Ittoop, O., Orband-Miller, L. A., Blanchard, S. 

G., Paulik, M. A., and Weiel, J. E. (2000) HIV protease inhibitors block adipogenesis and 

increase lipolysis in vitro, Antiviral Research 47, 121-129. 

258. Pacenti, M., Barzon, L., Favaretto, F., Fincati, K., Romano, S., Milan, G., Vettor, R., and 

Palu, G. (2006) Microarray analysis during adipogenesis identifies new genes altered by 

antiretroviral drugs, AIDS (London, England) 20, 1691-1705. 

259. Greenspan, P., Mayer, E. P., and Fowler, S. D. (1985) Nile red: a selective fluorescent 

stain for intracellular lipid droplets, J Cell Biol 100, 965-973. 

260. Ford, J., Khoo, S. H., and Back, D. J. (2004) The intracellular pharmacology of 

antiretroviral protease inhibitors, J Antimicrob Chemother 54, 982-990. 

261. Kovsan, J., Bluher, M., Tarnovscki, T., Kloting, N., Kirshtein, B., Madar, L., Shai, I., 

Golan, R., Harman-Boehm, I., Schon, M. R., Greenberg, A. S., Elazar, Z., Bashan, N., 

and Rudich, A. (2011) Altered autophagy in human adipose tissues in obesity, J Clin 

Endocrinol Metab 96, E268-277. 



www.manaraa.com

191 

 

262. Dong, H., and Czaja, M. J. (2011) Regulation of lipid droplets by autophagy, Trends 

Endocrinol Metab 22, 234-240. 

263. Singh, R., Xiang, Y., Wang, Y., Baikati, K., Cuervo, A. M., Luu, Y. K., Tang, Y., Pessin, 

J. E., Schwartz, G. J., and Czaja, M. J. (2009) Autophagy regulates adipose mass and 

differentiation in mice, The Journal of clinical investigation 119, 3329-3339. 

264. Zhang, Y., Goldman, S., Baerga, R., Zhao, Y., Komatsu, M., and Jin, S. (2009) Adipose-

specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in 

adipogenesis, Proceedings of the National Academy of Sciences of the United States of 

America 106, 19860-19865. 

265. You, J., He, Z., Chen, L., Deng, G., Liu, W., Qin, L., Qiu, F., and Chen, X. (2010) CH05-

10, a novel indinavir analog, is a broad-spectrum antitumor agent that induces cell cycle 

arrest, apoptosis, endoplasmic reticulum stress and autophagy, Cancer Sci 101, 2644-

2651. 

266. Mizushima, N., and Yoshimori, T. (2007) How to interpret LC3 immunoblotting, 

Autophagy 3, 542-545. 

267. Bjorkoy, G., Lamark, T., Pankiv, S., Overvatn, A., Brech, A., and Johansen, T. (2009) 

Monitoring autophagic degradation of p62/SQSTM1, Methods Enzymol 452, 181-197. 

268. Pankiv, S., Clausen, T. H., Lamark, T., Brech, A., Bruun, J. A., Outzen, H., Overvatn, A., 

Bjorkoy, G., and Johansen, T. (2007) p62/SQSTM1 binds directly to Atg8/LC3 to 

facilitate degradation of ubiquitinated protein aggregates by autophagy, J Biol Chem 282, 

24131-24145. 

269. Avivar-Valderas, A., Salas, E., Bobrovnikova-Marjon, E., Diehl, J. A., Nagi, C., 

Debnath, J., and Aguirre-Ghiso, J. A. (2011) PERK Integrates Autophagy and Oxidative 



www.manaraa.com

192 

 

Stress Responses To Promote Survival during Extracellular Matrix Detachment, Mol Cell 

Biol 31, 3616-3629. 

270. Goldman, S., Zhang, Y., and Jin, S. (2010) Autophagy and adipogenesis: implications in 

obesity and type II diabetes, Autophagy 6, 179-181. 

271. Ichimura, Y., and Komatsu, M. (2010) Selective degradation of p62 by autophagy, Semin 

Immunopathol 32, 431-436. 

272. Larsen, K. B., Lamark, T., Overvatn, A., Harneshaug, I., Johansen, T., and Bjorkoy, G. 

(2010) A reporter cell system to monitor autophagy based on p62/SQSTM1, Autophagy 

6, 784-793. 

273. Christian, F., Anthony, D. F., Vadrevu, S., Riddell, T., Day, J. P., McLeod, R., Adams, 

D. R., Baillie, G. S., and Houslay, M. D. (2010) p62 (SQSTM1) and cyclic AMP 

phosphodiesterase-4A4 (PDE4A4) locate to a novel, reversible protein aggregate with 

links to autophagy and proteasome degradation pathways, Cell Signal 22, 1576-1596. 

274. Myeku, N., and Figueiredo-Pereira, M. E. (2011) Dynamics of the degradation of 

ubiquitinated proteins by proteasomes and autophagy: association with sequestosome 

1/p62, J Biol Chem 286, 22426-22440. 

275. Rouschop, K. M., van den Beucken, T., Dubois, L., Niessen, H., Bussink, J., Savelkouls, 

K., Keulers, T., Mujcic, H., Landuyt, W., Voncken, J. W., Lambin, P., van der Kogel, A. 

J., Koritzinsky, M., and Wouters, B. G. (2010) The unfolded protein response protects 

human tumor cells during hypoxia through regulation of the autophagy genes 

MAP1LC3B and ATG5, J Clin Invest 120, 127-141. 

276. Friis-Moller, N., Weber, R., Reiss, P., Thiebaut, R., Kirk, O., d'Arminio Monforte, A., 

Pradier, C., Morfeldt, L., Mateu, S., Law, M., El-Sadr, W., De Wit, S., Sabin, C. A., 



www.manaraa.com

193 

 

Phillips, A. N., and Lundgren, J. D. (2003) Cardiovascular disease risk factors in HIV 

patients--association with antiretroviral therapy. Results from the DAD study, Aids 17, 

1179-1193. 

277. Gentile, C. L., Frye, M. A., and Pagliassotti, M. J. (2011) Fatty acids and the endoplasmic 

reticulum in nonalcoholic fatty liver disease, Biofactors 37, 8-16. 

278. Puri, P., Mirshahi, F., Cheung, O., Natarajan, R., Maher, J. W., Kellum, J. M., and 

Sanyal, A. J. (2008) Activation and dysregulation of the unfolded protein response in 

nonalcoholic fatty liver disease, Gastroenterology 134, 568-576. 

279. Lei, X., Zhang, S., Barbour, S. E., Bohrer, A., Ford, E. L., Koizumi, A., Papa, F. R., and 

Ramanadham, S. (2010) Spontaneous development of endoplasmic reticulum stress that 

can lead to diabetes mellitus is associated with higher calcium-independent 

phospholipase A2 expression: a role for regulation by SREBP-1, J Biol Chem 285, 6693-

6705. 

280. Czaja, M. J. (2010) Autophagy in health and disease. 2. Regulation of lipid metabolism 

and storage by autophagy: pathophysiological implications, Am J Physiol Cell Physiol 

298, C973-978. 

281. Mizushima, N., Yoshimori, T., and Levine, B. (2010) Methods in mammalian autophagy 

research, Cell 140, 313-326. 

282. Ni, H. M., Bockus, A., Wozniak, A. L., Jones, K., Weinman, S., Yin, X. M., and Ding, 

W. X. (2011) Dissecting the dynamic turnover of GFP-LC3 in the autolysosome, 

Autophagy 7, 188-204. 



www.manaraa.com

194 

 

283. Moreno-Torres, A., Domingo, P., Pujol, J., Blanco-Vaca, F., Arroyo, J. A., and Sambeat, 

M. A. (2007) Liver triglyceride content in HIV-1-infected patients on combination 

antiretroviral therapy studied with 1H-MR spectroscopy, Antivir Ther 12, 195-203. 

284. Amir, M., and Czaja, M. J. (2011) Autophagy in nonalcoholic steatohepatitis, Expert Rev 

Gastroenterol Hepatol 5, 159-166. 

285. Yin, X. M., Ding, W. X., and Gao, W. (2008) Autophagy in the liver, Hepatology 47, 

1773-1785. 

286. Boyd, M. A., and Hill, A. M. (2010) Clinical management of treatment-experienced, 

HIV/AIDS patients in the combination antiretroviral therapy era, Pharmacoeconomics 28 

Suppl 1, 17-34. 

287. Ribera, E., and Curran, A. (2008) Double-boosted protease inhibitor antiretroviral 

regimens: what role?, Drugs 68, 2257-2267. 

288. Gagnon, A., Angel, J. B., and Sorisky, A. (1998) Protease inhibitors and adipocyte 

differentiation in cell culture, Lancet 352, 1032. 

289. Riddle, T. M., Kuhel, D. G., Woollett, L. A., Fichtenbaum, C. J., and Hui, D. Y. (2001) 

HIV protease inhibitor induces fatty acid and sterol biosynthesis in liver and adipose 

tissues due to the accumulation of activated sterol regulatory element-binding proteins in 

the nucleus, J Biol Chem 276, 37514-37519. 

290. Vernochet, C., Azoulay, S., Duval, D., Guedj, R., Ailhaud, G., and Dani, C. (2003) 

Differential effect of HIV protease inhibitors on adipogenesis: intracellular ritonavir is 

not sufficient to inhibit differentiation, Aids 17, 2177-2180. 

291. Molto, J., Valle, M., Back, D., Cedeno, S., Watson, V., Liptrott, N., Egan, D., Miranda, 

C., Barbanoj, M. J., and Clotet, B. (2011) Plasma and intracellular (peripheral blood 



www.manaraa.com

195 

 

mononuclear cells) pharmacokinetics of once-daily raltegravir (800 milligrams) in HIV-

infected patients, Antimicrob Agents Chemother 55, 72-75. 

292. Ofotokun, I., Chuck, S. K., Binongo, J. N., Palau, M., Lennox, J. L., and Acosta, E. P. 

(2007) Lopinavir/Ritonavir pharmacokinetic profile: impact of sex and other covariates 

following a change from twice-daily to once-daily therapy, J Clin Pharmacol 47, 970-

977. 

293. Jackson, A., Hill, A., Puls, R., Else, L., Amin, J., Back, D., Lin, E., Khoo, S., Emery, S., 

Morley, R., Gazzard, B., and Boffito, M. (2010) Pharmacokinetics of plasma 

lopinavir/ritonavir following the administration of 400/100 mg, 200/150 mg and 200/50 

mg twice daily in HIV-negative volunteers, J Antimicrob Chemother 66, 635-640. 

294. Boyd, M. A., Aarnoutse, R. E., Ruxrungtham, K., Stek, M., Jr., van Heeswijk, R. P., 

Lange, J. M., Cooper, D. A., Phanuphak, P., and Burger, D. M. (2003) Pharmacokinetics 

of indinavir/ritonavir (800/100 mg) in combination with efavirenz (600 mg) in HIV-1-

infected subjects, J Acquir Immune Defic Syndr 34, 134-139. 

295. Dupin, N., Buffet, M., Marcelin, A. G., Lamotte, C., Gorin, I., Ait-Arkoub, Z., Treluyer, 

J. M., Bui, P., Calvez, V., and Peytavin, G. (2002) HIV and antiretroviral drug 

distribution in plasma and fat tissue of HIV-infected patients with lipodystrophy, Aids 16, 

2419-2424. 

296. Janneh, O., Hoggard, P. G., Tjia, J. F., Jones, S. P., Khoo, S. H., Maher, B., Back, D. J., 

and Pirmohamed, M. (2003) Intracellular disposition and metabolic effects of zidovudine, 

stavudine and four protease inhibitors in cultured adipocytes, Antivir Ther 8, 417-426. 

297. Shirakawa, K., Maeda, S., Gotoh, T., Hayashi, M., Shinomiya, K., Ehata, S., Nishimura, 

R., Mori, M., Onozaki, K., Hayashi, H., Uematsu, S., Akira, S., Ogata, E., Miyazono, K., 



www.manaraa.com

196 

 

and Imamura, T. (2006) CCAAT/enhancer-binding protein homologous protein (CHOP) 

regulates osteoblast differentiation, Mol Cell Biol 26, 6105-6116. 

298. Vankoningsloo, S., De Pauw, A., Houbion, A., Tejerina, S., Demazy, C., de Longueville, 

F., Bertholet, V., Renard, P., Remacle, J., Holvoet, P., Raes, M., and Arnould, T. (2006) 

CREB activation induced by mitochondrial dysfunction triggers triglyceride 

accumulation in 3T3-L1 preadipocytes, J Cell Sci 119, 1266-1282. 

299. Brennan, C. M., and Steitz, J. A. (2001) HuR and mRNA stability, Cell Mol Life Sci 58, 

266-277. 

300. Raineri, I., Wegmueller, D., Gross, B., Certa, U., and Moroni, C. (2004) Roles of AUF1 

isoforms, HuR and BRF1 in ARE-dependent mRNA turnover studied by RNA 

interference, Nucleic Acids Res 32, 1279-1288. 

301. Timchenko, N. A., Welm, A. L., Lu, X., and Timchenko, L. T. (1999) CUG repeat 

binding protein (CUGBP1) interacts with the 5' region of C/EBPbeta mRNA and 

regulates translation of C/EBPbeta isoforms, Nucleic Acids Res 27, 4517-4525. 

302. Poleev, A., Hartmann, A., and Stamm, S. (2000) A trans-acting factor, isolated by the 

three-hybrid system, that influences alternative splicing of the amyloid precursor protein 

minigene, Eur J Biochem 267, 4002-4010. 

303. Karagiannides, I., Thomou, T., Tchkonia, T., Pirtskhalava, T., Kypreos, K. E., 

Cartwright, A., Dalagiorgou, G., Lash, T. L., Farmer, S. R., Timchenko, N. A., and 

Kirkland, J. L. (2006) Increased CUG triplet repeat-binding protein-1 predisposes to 

impaired adipogenesis with aging, J Biol Chem 281, 23025-23033. 

304. Cherry, J., Jones, H., Karschner, V. A., and Pekala, P. H. (2008) Post-transcriptional 

control of CCAAT/enhancer-binding protein beta (C/EBPbeta) expression: formation of a 



www.manaraa.com

197 

 

nuclear HuR-C/EBPbeta mRNA complex determines the amount of message reaching the 

cytosol, J Biol Chem 283, 30812-30820. 

305. Jones, H., Carver, M., and Pekala, P. H. (2007) HuR binds to a single site on the 

C/EBPbeta mRNA of 3T3-L1 adipocytes, Biochem Biophys Res Commun 355, 217-220. 

306. Iakova, P., Wang, G. L., Timchenko, L., Michalak, M., Pereira-Smith, O. M., Smith, J. 

R., and Timchenko, N. A. (2004) Competition of CUGBP1 and calreticulin for the 

regulation of p21 translation determines cell fate, EMBO J 23, 406-417. 

307. Raulin, J. (2002) Human immunodeficiency virus and host cell lipids. Interesting 

pathways in research for a new HIV therapy, Progress in lipid research 41, 27-65. 

308. Caron, M., Auclair, M., Vigouroux, C., Glorian, M., Forest, C., and Capeau, J. (2001) 

The HIV protease inhibitor indinavir impairs sterol regulatory element-binding protein-1 

intranuclear localization, inhibits preadipocyte differentiation, and induces insulin 

resistance, Diabetes 50, 1378-1388. 

309. von Schwarzenberg, K., Held, S. A., Schaub, A., Brauer, K. M., Bringmann, A., and 

Brossart, P. (2009) Proteasome inhibition overcomes the resistance of renal cell 

carcinoma cells against the PPARgamma ligand troglitazone, Cell Mol Life Sci 66, 1295-

1308. 

310. Liu, S. H., Yang, C. N., Pan, H. C., Sung, Y. J., Liao, K. K., Chen, W. B., Lin, W. Z., and 

Sheu, M. L. (2010) IL-13 downregulates PPAR-gamma/heme oxygenase-1 via ER stress-

stimulated calpain activation: aggravation of activated microglia death, Cell Mol Life Sci 

67, 1465-1476. 

311. Park, S. H., Choi, H. J., Yang, H., Do, K. H., Kim, J., Lee, D. W., and Moon, Y. (2010) 

Endoplasmic reticulum stress-activated C/EBP homologous protein enhances nuclear 



www.manaraa.com

198 

 

factor-kappaB signals via repression of peroxisome proliferator-activated receptor 

gamma, J Biol Chem 285, 35330-35339. 

312. Tamama, K., Kawasaki, H., Kerpedjieva, S. S., Guan, J., Ganju, R. K., and Sen, C. K. 

(2011) Differential roles of hypoxia inducible factor subunits in multipotential stromal 

cells under hypoxic condition, J Cell Biochem 112, 804-817. 

313. Caron, M., Auclair, M., Donadille, B., Bereziat, V., Guerci, B., Laville, M., Narbonne, 

H., Bodemer, C., Lascols, O., Capeau, J., and Vigouroux, C. (2007) Human 

lipodystrophies linked to mutations in A-type lamins and to HIV protease inhibitor 

therapy are both associated with prelamin A accumulation, oxidative stress and premature 

cellular senescence, Cell Death Differ 14, 1759-1767. 

314. Coffinier, C., Hudon, S. E., Farber, E. A., Chang, S. Y., Hrycyna, C. A., Young, S. G., 

and Fong, L. G. (2007) HIV protease inhibitors block the zinc metalloproteinase 

ZMPSTE24 and lead to an accumulation of prelamin A in cells, Proc Natl Acad Sci U S 

A 104, 13432-13437. 

315. Capanni, C., Mattioli, E., Columbaro, M., Lucarelli, E., Parnaik, V. K., Novelli, G., 

Wehnert, M., Cenni, V., Maraldi, N. M., Squarzoni, S., and Lattanzi, G. (2005) Altered 

pre-lamin A processing is a common mechanism leading to lipodystrophy, Hum Mol 

Genet 14, 1489-1502. 

316. Lloyd, D. J., Trembath, R. C., and Shackleton, S. (2002) A novel interaction between 

lamin A and SREBP1: implications for partial lipodystrophy and other laminopathies, 

Hum Mol Genet 11, 769-777. 



www.manaraa.com

199 

 

317. Thoen, L. F., Guimaraes, E. L., Dolle, L., Mannaerts, I., Najimi, M., Sokal, E., and van 

Grunsven, L. A. (2011) A role for autophagy during hepatic stellate cell activation, J 

Hepatol. 

318. Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., Kominami, 

E., Ohsumi, Y., and Yoshimori, T. (2000) LC3, a mammalian homologue of yeast 

Apg8p, is localized in autophagosome membranes after processing, The EMBO journal 

19, 5720-5728. 

319. Kabeya, Y., Mizushima, N., Yamamoto, A., Oshitani-Okamoto, S., Ohsumi, Y., and 

Yoshimori, T. (2004) LC3, GABARAP and GATE16 localize to autophagosomal 

membrane depending on form-II formation, J Cell Sci 117, 2805-2812. 

320. Tanida, I., Sou, Y. S., Ezaki, J., Minematsu-Ikeguchi, N., Ueno, T., and Kominami, E. 

(2004) HsAtg4B/HsApg4B/autophagin-1 cleaves the carboxyl termini of three human 

Atg8 homologues and delipidates microtubule-associated protein light chain 3- and 

GABAA receptor-associated protein-phospholipid conjugates, J Biol Chem 279, 36268-

36276. 

321. Hosokawa, N., Hara, Y., and Mizushima, N. (2007) Generation of cell lines with 

tetracycline-regulated autophagy and a role for autophagy in controlling cell size, FEBS 

Lett 581, 2623-2629. 

322. Kirkin, V., Lamark, T., Sou, Y. S., Bjorkoy, G., Nunn, J. L., Bruun, J. A., Shvets, E., 

McEwan, D. G., Clausen, T. H., Wild, P., Bilusic, I., Theurillat, J. P., Overvatn, A., Ishii, 

T., Elazar, Z., Komatsu, M., Dikic, I., and Johansen, T. (2009) A role for NBR1 in 

autophagosomal degradation of ubiquitinated substrates, Mol Cell 33, 505-516. 



www.manaraa.com

200 

 

323. Liang, J. S., Distler, O., Cooper, D. A., Jamil, H., Deckelbaum, R. J., Ginsberg, H. N., 

and Sturley, S. L. (2001) HIV protease inhibitors protect apolipoprotein B from 

degradation by the proteasome: a potential mechanism for protease inhibitor-induced 

hyperlipidemia, Nat Med 7, 1327-1331. 

324. Piccinini, M., Rinaudo, M. T., Chiapello, N., Ricotti, E., Baldovino, S., Mostert, M., and 

Tovo, P. A. (2002) The human 26S proteasome is a target of antiretroviral agents, Aids 

16, 693-700. 

325. Piccinini, M., Rinaudo, M. T., Anselmino, A., Buccinna, B., Ramondetti, C., Dematteis, 

A., Ricotti, E., Palmisano, L., Mostert, M., and Tovo, P. A. (2005) The HIV protease 

inhibitors nelfinavir and saquinavir, but not a variety of HIV reverse transcriptase 

inhibitors, adversely affect human proteasome function, Antivir Ther 10, 215-223. 

326. Bauvy, C., Meijer, A. J., and Codogno, P. (2009) Assaying of autophagic protein 

degradation, Methods Enzymol 452, 47-61. 

327. Cheong, H., and Klionsky, D. J. (2008) Biochemical methods to monitor autophagy-

related processes in yeast, Methods Enzymol 451, 1-26. 

328. Nakatogawa, H., Ichimura, Y., and Ohsumi, Y. (2007) Atg8, a ubiquitin-like protein 

required for autophagosome formation, mediates membrane tethering and hemifusion, 

Cell 130, 165-178. 

329. Scheuner, D., Song, B., McEwen, E., Liu, C., Laybutt, R., Gillespie, P., Saunders, T., 

Bonner-Weir, S., and Kaufman, R. J. (2001) Translational control is required for the 

unfolded protein response and in vivo glucose homeostasis, Mol Cell 7, 1165-1176. 

330. Shen, X., Zhang, K., and Kaufman, R. J. (2004) The unfolded protein response--a stress 

signaling pathway of the endoplasmic reticulum, J Chem Neuroanat 28, 79-92. 



www.manaraa.com

201 

 

331. Tu, B. P., and Weissman, J. S. (2004) Oxidative protein folding in eukaryotes: 

mechanisms and consequences, J Cell Biol 164, 341-346. 

332. Zhu, C., Xu, F., Wang, X., Shibata, M., Uchiyama, Y., Blomgren, K., and Hagberg, H. 

(2006) Different apoptotic mechanisms are activated in male and female brains after 

neonatal hypoxia-ischaemia, J Neurochem 96, 1016-1027. 

333. Samokhvalov, V., Scott, B. A., and Crowder, C. M. (2008) Autophagy protects against 

hypoxic injury in C. elegans, Autophagy 4, 1034-1041. 

334. Lugea, A., Waldron, R. T., French, S. W., and Pandol, S. J. (2011) Drinking and driving 

pancreatitis: links between endoplasmic reticulum stress and autophagy, Autophagy 7, 

783-785. 

335. Rzymski, T., Milani, M., Singleton, D. C., and Harris, A. L. (2009) Role of ATF4 in 

regulation of autophagy and resistance to drugs and hypoxia, Cell Cycle 8, 3838-3847. 

336. Ludtke, A., Buettner, J., Schmidt, H. H., and Worman, H. J. (2007) New PPARG 

mutation leads to lipodystrophy and loss of protein function that is partially restored by a 

synthetic ligand, J Med Genet 44, e88. 

337. Fischer, P., Moller, P., Bindl, L., Melzner, I., Tornqvist, H., Debatin, K. M., and 

Wabitsch, M. (2002) Induction of adipocyte differentiation by a thiazolidinedione in 

cultured, subepidermal, fibroblast-like cells of an infant with congenital generalized 

lipodystrophy, J Clin Endocrinol Metab 87, 2384-2390. 

338. Carr, A., Workman, C., Carey, D., Rogers, G., Martin, A., Baker, D., Wand, H., Law, M., 

Samaras, K., Emery, S., and Cooper, D. A. (2004) No effect of rosiglitazone for 

treatment of HIV-1 lipoatrophy: randomised, double-blind, placebo-controlled trial, 

Lancet 363, 429-438. 



www.manaraa.com

202 

 

339. Hadigan, C., Yawetz, S., Thomas, A., Havers, F., Sax, P. E., and Grinspoon, S. (2004) 

Metabolic effects of rosiglitazone in HIV lipodystrophy: a randomized, controlled trial, 

Ann Intern Med 140, 786-794. 

340. Sekhar, R. V., Patel, S. G., D'Amico, S., Shi, J., Balasubramanyam, A., Rehman, K., 

Jahoor, F., and Visnegarwala, F. (2010) Effects of rosiglitazone on abnormal lipid 

kinetics in HIV-associated dyslipidemic lipodystrophy: a stable isotope study, 

Metabolism 60, 754-760. 

341. Nguyen, A., Calmy, A., Delhumeau, C., Mercier, I., Cavassini, M., Mello, A. F., Elzi, L., 

Rauch, A., Bernasconi, E., Schmid, P., and Hirschel, B. (2011) A randomized cross-over 

study to compare raltegravir and efavirenz (SWITCH-ER study), Aids 25, 1481-1487. 

342. Teppler, H., Brown, D. D., Leavitt, R. Y., Sklar, P., Wan, H., Xu, X., Lievano, F., 

Lehman, H. P., Mast, T. C., and Nguyen, B. Y. (2011) Long-term safety from the 

raltegravir clinical development program, Curr HIV Res 9, 40-53. 

343. Cocohoba, J. (2009) The SWITCHMRK studies: substitution of lopinavir/ritonavir with 

raltegravir in HIV-positive individuals, Expert Rev Anti Infect Ther 7, 1159-1163. 

344. Eron, J. J., Young, B., Cooper, D. A., Youle, M., Dejesus, E., Andrade-Villanueva, J., 

Workman, C., Zajdenverg, R., Fatkenheuer, G., Berger, D. S., Kumar, P. N., Rodgers, A. 

J., Shaughnessy, M. A., Walker, M. L., Barnard, R. J., Miller, M. D., Dinubile, M. J., 

Nguyen, B. Y., Leavitt, R., Xu, X., and Sklar, P. (2010) Switch to a raltegravir-based 

regimen versus continuation of a lopinavir-ritonavir-based regimen in stable HIV-

infected patients with suppressed viraemia (SWITCHMRK 1 and 2): two multicentre, 

double-blind, randomised controlled trials, Lancet 375, 396-407. 



www.manaraa.com

203 

 

345. Perez-Matute, P., Perez-Martinez, L., Blanco, J. R., and Oteo, J. A. (2011) Neutral 

actions of Raltegravir on adipogenesis, glucose metabolism and lipolysis in 3T3-L1 

adipocytes, Curr HIV Res 9, 174-179. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

204 

 

Vita 

Personal Summary: 

 Beth Shoshana Zha was raised in the tiny village of Hume, Virginia. Although focused on 

the performing arts for most of her childhood, she internally aspired to become a physician. She 

began her higher education in this pursuit at The College of William and Mary, majoring in 

Neuroscience and graduating sum cum laude in 2006. That same year, she began the MD/PhD 

program and Virginia Commonwealth University/Medical College of Virginia. Besides focusing 

on her studies, two more passions emerged – volunteering for the local Mattaponi health clinic 

and running. In 2008, Shoshana began working in the laboratory of Dr. Huiping Zhou where she 

not only studied the intricacies of basic science research, but also met her husband. 

 

Education: 

September 2011 Ph.D. Defense, Virginia Commonwealth University, Richmond, VA 

   Dissertation title:"HIV protease inhibitors trigger lipid metabolism   

   dysregulation through endoplasmic reticulum stress and autophagy." 

   GPA: 3.917 

May 2006  Bachelors of Science, The College of William and Mary 

   Major: Neuroscience  Minor: Biochemistry 

   GPA: 3.81 

 

Awards: 

May 2011  Forbes Day Finalist, Virginia Commonwealth Universiy 

April 2011  Oral Presentation Award, Graduate Association, Viriginia Commonwealth 

April 2011  Oral Presentation, American Physician Scientist Annual Meeting  

April 2011  Travel Award, Graduate Association, Virginia Commonwealth University 

April 2011  Travel Award, American Physician Scientist Association  

April 2011  Travel Award, Midwest Trainee, Central Society for Clinical Research  

March 2011  Mary P. Coleman Award, Microbiology/Immunology, VCU 

May 2010  Charles C. Clayton Fellowship, Microbiology/Immunology, VCU 

November 2011 Phi Kappa Phi Inductee, Virginia Commonwealth University 

May 2011  Who‟s Who Among Graduate Students 

October 2009  Ruth L. Kirschstein National Research Service Award for Individual  

    Predoctoral MD/Ph.D (F30)  - NIDDK 

May 2009  Graduate Travel Fellowship, American Society for Biochemistry and  

    Molecular Biology  

April 2008   Highest Honors, Behavioral Science II, VCU/MCV 

May 2006   M.D./Ph.D. Full Scholarship, Virginia Commonwealth University  

May 2006  Honors and suma cum laude, The College of William and Mary   

April 2006  Travel Award, Howard Hughes Medical Institute, The College of William  

    and Mary   

May 2005  Summer Fellowship, Howard Hughes, The College of William and Mary  

September 2003  Golden Key International Honor Society Inductee 

September 2003  National Collegiate Honor Society Inductee 

 



www.manaraa.com

205 

 

Societies: 

     American Physician Scientist Association 

      International Society of Infectious Diseases 

   American Medical Association 

   Physicians for Human Rights 

 

Abstracts and Publications: 

 HIV Protease Inhibitors Disrupt Lipid Metaoblism by Activating Endoplasmic Reticulum 

 Stress and Autophagy in Adipocytes. Zha B.S., Zha W., Zhou J., Zhao R., Wang X.,  

 Hylemon P.B., and Zhou H. Submitted September 2011 

 

 ER Stress and Lipid Metabolism in Adipocytes. Zha B.S. and Zhou H. Submitted  

 September 2011 

 

 Highly Active Antiretroviral Therapy (HAART) and Metabolic Complications. Zha, 

 B.S., Studer E., Zha W., Hylemon P.B., Pandak W., and Zhou H. (2011) HIV  

 Infection/Book 3. ISBN 979-953-307-189-2. In Press 

 

    A Link Between HIV Protease Inhibitor-Induced ER Stress and Autophagy in Adipocytes 

 and Hepatocytes. Zha B.S., Liang M., Holt S.E., Hylemon P.B., Zhou H. Presented at the 

 Association of American Physicians, American Society for Clinical Investigation, and   

 VCU Graduate Student Symposium, April 2011 

 

 Cellular Pharmacokinetic Mechanisms of Adriamycin Resistance and its Modulation by 

 20(S)-Ginsenoside Rh2 in MCF-7/Adr Cells. Zhang J., Zhou F., Wu X., Zhang X., Chen 

 Y., Zha B.S., Niu F., Lu M., Hao G., Sun Y., Sun J., Peng Y., Wang G. Br J 

 Pharmacology, 2011. PMID 21615726 

 

    Metabonomic Approach to Evaluating Pharmacodynamics of Ginkgo biloba Extract on 

 the Perturbed Metabolism. Zha W.B., AJ Y., Wang G.J., Zhu X.X., Gu S.H., Cao B., Yan 

 B., Zha B.S., Hao H.P., Huang Q., Liu L.S., Shi J., Sun J.G. Chinese J of Natural Med, 

 2011. 9 (3), 232-240. 

 

 HIV Protease Inhibitors Differentially Regulate PPARγ Expression in Adipocytes. 

 Pecora B.S., Zha W., Hylemon P.B., Wabitsch M., Zhou H. Presented at Experimental 

 Biology: American Society for Biochemistry and Molecular Biology, April 2010 

 

 HIV Protease Inhibitors Activate the ER Stress Response and Disrupt Lipid 

 Metabolism in 3T3-L1 Adipocytes. Pecora B.S., Gurley E., Zhou H. Presented at 

 Experimental Biology: American Society for Biochemistry and Molecular Biology, April 

 2009 

 

   Thermoregulatory Projections to the Dorsomedial Hypothalamus.  Pecora B.S., Straub 

 A., Griffin J.D. Presented at Experimental Biology: Physiology - Thermoregulation,  

 April 2006 

 


	HIV Protease Inhibitors Trigger Lipid Metabolism Dysregulation Through Endoplasmic Reticulum Stress and Autophagy
	Downloaded from

	tmp.1404570246.pdf.GzWT1

